Wednesday, 6 December 2023

Bar Graph plot using different Python Libraries

 







#!/usr/bin/env python

# coding: utf-8


# # 1. Using Matplotlib library 


# In[1]:



import matplotlib.pyplot as plt


# Sample data

categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']

values = [10, 25, 15, 30]


# Create a bar graph

plt.bar(categories, values)


# Adding labels and title

plt.xlabel('Categories')

plt.ylabel('Values')

plt.title('Bar Graph Example')


# Show the graph

plt.show()


#clcoding.com



# # 2. Using Seaborn library


# In[2]:



import seaborn as sns

import matplotlib.pyplot as plt


# Sample data

categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']

values = [10, 25, 15, 30]


# Create a bar plot using Seaborn

sns.barplot(x=categories, y=values)


# Adding labels and title

plt.xlabel('Categories')

plt.ylabel('Values')

plt.title('Bar Plot Example')


# Show the plot

plt.show()

#clcoding.com



# # 3. Using Plotly library


# In[3]:



import plotly.express as px


# Sample data

categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']

values = [10, 25, 15, 30]


# Create an interactive bar graph using Plotly

fig = px.bar(x=categories, y=values, labels={'x': 'Categories', 'y': 'Values'}, title='Bar Graph Example')


# Show the plot

fig.show()

#clcoding.com



# # 4. Using Bokeh library


# In[4]:



from bokeh.plotting import figure, show

from bokeh.io import output_notebook


# Sample data

categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']

values = [10, 25, 15, 30]


# Create a bar graph using Bokeh

p = figure(x_range=categories, title='Bar Graph Example', x_axis_label='Categories', y_axis_label='Values')

p.vbar(x=categories, top=values, width=0.5)


# Show the plot in a Jupyter Notebook (or use output_file for standalone HTML)

output_notebook()

show(p)

#clcoding.com



# In[ ]:






0 Comments:

Post a Comment

Popular Posts

Categories

AI (32) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (146) C (77) C# (12) C++ (82) Course (67) Coursera (198) Cybersecurity (24) data management (11) Data Science (106) Data Strucures (8) Deep Learning (13) Django (14) Downloads (3) edx (2) Engineering (14) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Google (21) Hadoop (3) HTML&CSS (47) IBM (25) IoT (1) IS (25) Java (93) Leet Code (4) Machine Learning (46) Meta (18) MICHIGAN (5) microsoft (4) Nvidia (1) Pandas (3) PHP (20) Projects (29) Python (888) Python Coding Challenge (284) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (2) Software (17) SQL (42) UX Research (1) web application (8)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses