Saturday, 27 January 2024

10 different data charts using Python

 # 10 different data charts using Python


pip install matplotlib seaborn

# 1. Line Chart:

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [10, 12, 5, 8, 3]

plt.plot(x, y)
plt.title('Line Chart')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.show()
#clcoding.com




# 2. Bar Chart:

import matplotlib.pyplot as plt

categories = ['A', 'B', 'C', 'D']
values = [25, 40, 30, 20]

plt.bar(categories, values)
plt.title('Bar Chart')
plt.xlabel('Categories')
plt.ylabel('Values')
plt.show()
#clcoding.com




# 3. Pie Chart:

import matplotlib.pyplot as plt

labels = ['Category A', 'Category B', 'Category C']
sizes = [30, 45, 25]

plt.pie(sizes, labels=labels, autopct='%1.1f%%')
plt.title('Pie Chart')
plt.show()
#clcoding.com




# 4. Histogram:

import matplotlib.pyplot as plt
import numpy as np

data = np.random.randn(1000)

plt.hist(data, bins=30, edgecolor='black')
plt.title('Histogram')
plt.xlabel('Values')
plt.ylabel('Frequency')
plt.show()
#clcoding.com




# 5. Scatter Plot:

import matplotlib.pyplot as plt
import numpy as np

x = np.random.rand(50)
y = 2 * x + 1 + 0.1 * np.random.randn(50)

plt.scatter(x, y)
plt.title('Scatter Plot')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.show()
#clcoding.com




# 6. Box Plot:

import seaborn as sns
import numpy as np

data = [np.random.normal(0, std, 100) for std in range(1, 4)]

sns.boxplot(data=data)
plt.title('Box Plot')
plt.xlabel('Category')
plt.ylabel('Values')
plt.show()
#clcoding.com




# 7. Violin Plot:

import seaborn as sns
import numpy as np

data = [np.random.normal(0, std, 100) for std in range(1, 4)]

sns.violinplot(data=data)
plt.title('Violin Plot')
plt.xlabel('Category')
plt.ylabel('Values')
plt.show()
#clcoding.com




# 8. Heatmap:

import seaborn as sns
import numpy as np

data = np.random.rand(10, 10)

sns.heatmap(data, annot=True)
plt.title('Heatmap')
plt.show()
#clcoding.com




# 9. Area Chart:

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y1 = [10, 15, 25, 30, 35]
y2 = [5, 10, 20, 25, 30]

plt.fill_between(x, y1, y2, color='skyblue', alpha=0.4)
plt.title('Area Chart')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.show()
#clcoding.com




# 10. Radar Chart:

import matplotlib.pyplot as plt
import numpy as np

labels = np.array([' A', ' B', ' C', ' D', ' E'])
data = np.array([4, 5, 3, 4, 2])

angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False)
data = np.concatenate((data, [data[0]]))
angles = np.concatenate((angles, [angles[0]]))

plt.polar(angles, data, marker='o')
plt.fill(angles, data, alpha=0.25)
plt.title('Radar Chart')
plt.show()
#clcoding.com




0 Comments:

Post a Comment

Popular Posts

Categories

100 Python Programs for Beginner (93) AI (37) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (184) C (77) C# (12) C++ (83) Course (67) Coursera (234) Cybersecurity (24) Data Analytics (2) data management (11) Data Science (135) Data Strucures (8) Deep Learning (21) Django (14) Downloads (3) edx (2) Engineering (14) Euron (22) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Generative AI (5) Google (34) Hadoop (3) HTML Quiz (1) HTML&CSS (47) IBM (30) IoT (1) IS (25) Java (93) Java quiz (1) Leet Code (4) Machine Learning (65) Meta (22) MICHIGAN (5) microsoft (4) Nvidia (4) Pandas (4) PHP (20) Projects (29) pyth (1) Python (961) Python Coding Challenge (408) Python Quiz (59) Python Tips (3) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (4) Software (17) SQL (42) UX Research (1) web application (8) Web development (4) web scraping (2)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses