Saturday, 13 January 2024

Bar Graph plot using different Python Libraries


#!/usr/bin/env python
# coding: utf-8

# # 1. Using Matplotlib library

# In[1]:


import matplotlib.pyplot as plt

# Sample data
categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']
values = [10, 25, 15, 30]

# Create a bar graph
plt.bar(categories, values)

# Adding labels and title
plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Graph Example')

# Show the graph
plt.show()

#clcoding.com


# # 2. Using Seaborn library

# In[2]:


import seaborn as sns
import matplotlib.pyplot as plt

# Sample data
categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']
values = [10, 25, 15, 30]

# Create a bar plot using Seaborn
sns.barplot(x=categories, y=values)

# Adding labels and title
plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Plot Example')

# Show the plot
plt.show()
#clcoding.com


# # 3. Using Plotly library

# In[3]:


import plotly.express as px

# Sample data
categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']
values = [10, 25, 15, 30]

# Create an interactive bar graph using Plotly
fig = px.bar(x=categories, y=values, labels={'x': 'Categories', 'y': 'Values'}, title='Bar Graph Example')

# Show the plot
fig.show()
#clcoding.com


# # 4. Using Bokeh library

# In[4]:


from bokeh.plotting import figure, show
from bokeh.io import output_notebook

# Sample data
categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']
values = [10, 25, 15, 30]

# Create a bar graph using Bokeh
p = figure(x_range=categories, title='Bar Graph Example', x_axis_label='Categories', y_axis_label='Values')
p.vbar(x=categories, top=values, width=0.5)

# Show the plot in a Jupyter Notebook (or use output_file for standalone HTML)
output_notebook()
show(p)
#clcoding.com


# In[ ]:






0 Comments:

Post a Comment

Popular Posts

Categories

AI (33) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (146) C (77) C# (12) C++ (82) Course (67) Coursera (198) Cybersecurity (24) data management (11) Data Science (106) Data Strucures (8) Deep Learning (13) Django (14) Downloads (3) edx (2) Engineering (14) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Google (21) Hadoop (3) HTML&CSS (47) IBM (25) IoT (1) IS (25) Java (93) Leet Code (4) Machine Learning (46) Meta (18) MICHIGAN (5) microsoft (4) Nvidia (1) Pandas (3) PHP (20) Projects (29) Python (893) Python Coding Challenge (285) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (2) Software (17) SQL (42) UX Research (1) web application (8)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses