Monday, 8 January 2024

CertNexus Certified Artificial Intelligence Practitioner Professional Certificate

 


What you'll learn

Learn about the business problems that AI/ML can solve as well as the specific AI/ML technologies that can solve them.  

Learn important tasks that make up the workflow, including data analysis and model training and about how machine learning tasks can be automated. 

Use ML algorithms to solve the two most common supervised problems regression and classification, and a common unsupervised problem: clustering.

Explore advanced algorithms used in both machine learning and deep learning. Build multiple models to solve business problems within a workflow.

Join Free:CertNexus Certified Artificial Intelligence Practitioner Professional Certificate

Professional Certificate - 5 course series

The Certified Artificial Intelligence Practitioner™ (CAIP) specialization prepares learners to earn an industry validated certification which will differentiate themselves from other job candidates and demnstrate proficiency in the concepts of Artificial intelligence (AI) and machine learning (ML) found in CAIP. 

AI and ML have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This specialization shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users. 

The specialization is designed for data science practitioners entering the field of artificial intelligence and will prepare learners for the CAIP certification exam. 

Applied Learning Project

At the conclusion of each course, learners will have the opportunity to complete a project which can be added to their portfolio of work.  Projects include: 

Create an AI project outline

Follow a machine learning workflow to predict demand 

Build a regression, classification, or clustering model

Build a convolutional neural network (CNN)

0 Comments:

Post a Comment

Popular Posts

Categories

100 Python Programs for Beginner (90) AI (37) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (184) C (77) C# (12) C++ (83) Course (67) Coursera (231) Cybersecurity (24) Data Analytics (1) data management (11) Data Science (135) Data Strucures (8) Deep Learning (21) Django (14) Downloads (3) edx (2) Engineering (14) Euron (19) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Generative AI (5) Google (34) Hadoop (3) HTML Quiz (1) HTML&CSS (47) IBM (30) IoT (1) IS (25) Java (93) Java quiz (1) Leet Code (4) Machine Learning (62) Meta (22) MICHIGAN (5) microsoft (4) Nvidia (4) Pandas (4) PHP (20) Projects (29) pyth (1) Python (959) Python Coding Challenge (402) Python Quiz (56) Python Tips (3) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (4) Software (17) SQL (42) UX Research (1) web application (8) Web development (4) web scraping (2)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses