What you'll learn
Create and interpret data visualizations using the Python programming language and associated packages & libraries
Apply and interpret inferential procedures when analyzing real data
Apply statistical modeling techniques to data (ie. linear and logistic regression, linear models, multilevel models, Bayesian inference techniques)
Understand importance of connecting research questions to data analysis methods.
Join Free: Statistics with Python Specialization
Specialization - 3 course series
This specialization is designed to teach learners beginning and intermediate concepts of statistical analysis using the Python programming language. Learners will learn where data come from, what types of data can be collected, study data design, data management, and how to effectively carry out data exploration and visualization. They will be able to utilize data for estimation and assessing theories, construct confidence intervals, interpret inferential results, and apply more advanced statistical modeling procedures. Finally, they will learn the importance of and be able to connect research questions to the statistical and data analysis methods taught to them.
Applied Learning Project
The courses in this specialization feature a variety of assignments that will test the learner’s knowledge and ability to apply content through concept checks, written analyses, and Python programming assessments. These assignments are conducted through quizzes, submission of written assignments, and the Jupyter Notebook environment.
0 Comments:
Post a Comment