Tuesday, 27 February 2024

Data Engineering with AWS: Acquire the skills to design and build AWS-based data transformation pipelines like a pro 2nd ed. Edition

 


Looking to revolutionize your data transformation game with AWS? Look no further! From strong foundations to hands-on building of data engineering pipelines, our expert-led manual has got you covered.

Key Features

Delve into robust AWS tools for ingesting, transforming, and consuming data, and for orchestrating pipelines

Stay up to date with a comprehensive revised chapter on Data Governance

Build modern data platforms with a new section covering transactional data lakes and data mesh

Book Description

This book, authored by a seasoned Senior Data Architect with 25 years of experience, aims to help you achieve proficiency in using the AWS ecosystem for data engineering. This revised edition provides updates in every chapter to cover the latest AWS services and features, takes a refreshed look at data governance, and includes a brand-new section on building modern data platforms which covers; implementing a data mesh approach, open-table formats (such as Apache Iceberg), and using DataOps for automation and observability.

You'll begin by reviewing the key concepts and essential AWS tools in a data engineer's toolkit and getting acquainted with modern data management approaches. You'll then architect a data pipeline, review raw data sources, transform the data, and learn how that transformed data is used by various data consumers. You’ll learn how to ensure strong data governance, and about populating data marts and data warehouses along with how a data lakehouse fits into the picture. After that, you'll be introduced to AWS tools for analyzing data, including those for ad-hoc SQL queries and creating visualizations. Then, you'll explore how the power of machine learning and artificial intelligence can be used to draw new insights from data. In the final chapters, you'll discover transactional data lakes, data meshes, and how to build a cutting-edge data platform on AWS.

By the end of this AWS book, you'll be able to execute data engineering tasks and implement a data pipeline on AWS like a pro!

What you will learn

Seamlessly ingest streaming data with Amazon Kinesis Data Firehose

Optimize, denormalize, and join datasets with AWS Glue Studio

Use Amazon S3 events to trigger a Lambda process to transform a file

Load data into a Redshift data warehouse and run queries with ease

Visualize and explore data using Amazon QuickSight

Extract sentiment data from a dataset using Amazon Comprehend

Build transactional data lakes using Apache Iceberg with Amazon Athena

Learn how a data mesh approach can be implemented on AWS

Who this book is for

This book is for data engineers, data analysts, and data architects who are new to AWS and looking to extend their skills to the AWS cloud. Anyone new to data engineering who wants to learn about the foundational concepts, while gaining practical experience with common data engineering services on AWS, will also find this book useful. A basic understanding of big data-related topics and Python coding will help you get the most out of this book, but it’s not a prerequisite. Familiarity with the AWS console and core services will also help you follow along.

Table of Contents

An Introduction to Data Engineering

Data Management Architectures for Analytics

The AWS Data Engineer’s Toolkit

Data Governance, Security, and Cataloging

Architecting Data Engineering Pipelines

Ingesting Batch and Streaming Data

Transforming Data to Optimize for Analytics

Identifying and Enabling Data Consumers

A Deeper Dive into Data Marts and Amazon Redshift

Orchestrating the Data Pipeline

Hard Copy: Data Engineering with AWS: Acquire the skills to design and build AWS-based data transformation pipelines like a pro 2nd ed. Edition



0 Comments:

Post a Comment

Popular Posts

Categories

AI (33) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (146) C (77) C# (12) C++ (82) Course (67) Coursera (198) Cybersecurity (24) data management (11) Data Science (106) Data Strucures (8) Deep Learning (13) Django (14) Downloads (3) edx (2) Engineering (14) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Google (21) Hadoop (3) HTML&CSS (47) IBM (25) IoT (1) IS (25) Java (93) Leet Code (4) Machine Learning (46) Meta (18) MICHIGAN (5) microsoft (4) Nvidia (1) Pandas (3) PHP (20) Projects (29) Python (893) Python Coding Challenge (285) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (2) Software (17) SQL (42) UX Research (1) web application (8)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses