What you'll learn
Learn what alternative data is and how it is used in financial market applications.
Become immersed in current academic and practitioner state-of-the-art research pertaining to alternative data applications.
Perform data analysis of real-world alternative datasets using Python.
Gain an understanding and hands-on experience in data analytics, visualization and quantitative modeling applied to alternative data in finance
Join Free: Python and Machine-Learning for Asset Management with Alternative Data Sets
There are 4 modules in this course
Over-utilization of market and accounting data over the last few decades has led to portfolio crowding, mediocre performance and systemic risks, incentivizing financial institutions which are looking for an edge to quickly adopt alternative data as a substitute to traditional data. This course introduces the core concepts around alternative data, the most recent research in this area, as well as practical portfolio examples and actual applications. The approach of this course is somewhat unique because while the theory covered is still a main component, practical lab sessions and examples of working with alternative datasets are also key. This course is fo you if you are aiming at carreers prospects as a data scientist in financial markets, are looking to enhance your analytics skillsets to the financial markets, or if you are interested in cutting-edge technology and research as they apply to big data. The required background is: Python programming, Investment theory , and Statistics. This course will enable you to learn new data and research techniques applied to the financial markets while strengthening data science and python skills.
0 Comments:
Post a Comment