Tuesday, 12 March 2024

Plots using Python

 


1. Line Plot:

#clcoding.com

import matplotlib.pyplot as plt

# Sample data

x = [1, 2, 3, 4, 5]

y = [2, 4, 6, 8, 10]

# Create a line plot

plt.plot(x, y)

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.title('Line Plot Example')

plt.show()

#clcoding.com


2. Bar Plot:

import matplotlib.pyplot as plt

# Sample data

categories = ['A', 'B', 'C', 'D']

values = [10, 20, 15, 25]

# Create a bar plot

plt.bar(categories, values)

plt.xlabel('Categories')

plt.ylabel('Values')

plt.title('Bar Plot Example')

plt.show()


3. Histogram:

import matplotlib.pyplot as plt

import numpy as np

# Generate random data

data = np.random.randn(1000)

# Create a histogram

plt.hist(data, bins=30)

plt.xlabel('Values')

plt.ylabel('Frequency')

plt.title('Histogram Example')

plt.show()


4. Scatter Plot:

import matplotlib.pyplot as plt

import numpy as np

# Generate random data

x = np.random.randn(100)

y = 2 * x + np.random.randn(100)

# Create a scatter plot

plt.scatter(x, y)

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.title('Scatter Plot Example')

plt.show()


5. Box Plot:

import seaborn as sns

import numpy as np

# Generate random data

data = np.random.randn(100)

# Create a box plot

sns.boxplot(data=data)

plt.title('Box Plot Example')

plt.show()


6. Violin Plot:

import seaborn as sns

import numpy as np

# Generate random data

data = np.random.randn(100)

# Create a violin plot

sns.violinplot(data=data)

plt.title('Violin Plot Example')

plt.show()


7. Heatmap:

#clcoding.com

import seaborn as sns

import numpy as np

# Generate random data

data = np.random.rand(10, 10)

#clcoding.com

# Create a heatmap

sns.heatmap(data)

plt.title('Heatmap Example')

plt.show()


8. Area Plot:

import matplotlib.pyplot as plt

# Sample data #clcoding.com

x = [1, 2, 3, 4, 5]

y1 = [2, 4, 6, 8, 10]

y2 = [1, 3, 5, 7, 9]

# Create an area plot

plt.fill_between(x, y1, color="skyblue", alpha=0.4)

plt.fill_between(x, y2, color="salmon", alpha=0.4)

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.title('Area Plot Example')

plt.show()


9. Pie Chart:

import matplotlib.pyplot as plt

# Sample data

sizes = [30, 20, 25, 15, 10]

labels = ['A', 'B', 'C', 'D', 'E']

# Create a pie chart

plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140)

plt.title('Pie Chart Example')

plt.show()


10. Polar Plot:

g

import matplotlib.pyplot as plt

import numpy as np

# Sample data

theta = np.linspace(0, 2*np.pi, 100)

r = np.sin(3*theta)

# Create a polar plot #clcoding.com

plt.polar(theta, r)

plt.title('Polar Plot Example')

plt.show()


11. 3D Plot:

import matplotlib.pyplot as plt

import numpy as np

# Sample data

x = np.linspace(-5, 5, 100)

y = np.linspace(-5, 5, 100)

X, Y = np.meshgrid(x, y)

Z = np.sin(np.sqrt(X**2 + Y**2))

# Create a 3D surface plot

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

ax.plot_surface(X, Y, Z)

ax.set_title('3D Plot Example')

plt.show()


12. Violin Swarm Plot:

#clcoding.com

import seaborn as sns

import numpy as np

# Generate random data

data = np.random.randn(100)

#clcoding.com

# Create a violin swarm plot

sns.violinplot(data=data, inner=None, color='lightgray')

sns.swarmplot(data=data, color='blue', alpha=0.5)

plt.title('Violin Swarm Plot Example')

plt.show()


13. Pair Plot:

import seaborn as sns

import pandas as pd

# Load sample dataset

iris = sns.load_dataset('iris')

# Create a pair plot

sns.pairplot(iris)

plt.title('Pair Plot Example')

plt.show()


0 Comments:

Post a Comment

Popular Posts

Categories

100 Python Programs for Beginner (53) AI (34) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (173) C (77) C# (12) C++ (82) Course (67) Coursera (226) Cybersecurity (24) data management (11) Data Science (128) Data Strucures (8) Deep Learning (20) Django (14) Downloads (3) edx (2) Engineering (14) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Google (34) Hadoop (3) HTML&CSS (47) IBM (25) IoT (1) IS (25) Java (93) Leet Code (4) Machine Learning (59) Meta (22) MICHIGAN (5) microsoft (4) Nvidia (3) Pandas (4) PHP (20) Projects (29) Python (932) Python Coding Challenge (363) Python Quiz (25) Python Tips (2) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (3) Software (17) SQL (42) UX Research (1) web application (8) Web development (2) web scraping (2)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses