Thursday, 16 May 2024

Interesting facts about Dictionaries

 Dictionary Methods

Dictionaries come with several handy methods such as setdefault, update, pop, popitem, and clear.

my_dict = {'name': 'Alice', 'age': 25}

# setdefault
my_dict.setdefault('city', 'Unknown')
print(my_dict)  

# update
my_dict.update({'age': 26, 'city': 'New York'})
print(my_dict)  

# pop
age = my_dict.pop('age')
print(age)  # Output: 26
print(my_dict)  

# popitem
item = my_dict.popitem()
print(item) 
print(my_dict)  

# clear
my_dict.clear()
print(my_dict)  

#clcoding.com
{'name': 'Alice', 'age': 25, 'city': 'Unknown'}
{'name': 'Alice', 'age': 26, 'city': 'New York'}
26
{'name': 'Alice', 'city': 'New York'}
('city', 'New York')
{'name': 'Alice'}
{}

Ordered Dictionaries

As of Python 3.7, dictionaries maintain insertion order by default. The OrderedDict from the collections module was used for this purpose in earlier versions.

my_dict = {'first': 1, 'second': 2, 'third': 3}
print(my_dict)  

#clcoding.com
{'first': 1, 'second': 2, 'third': 3}

Merging Dictionaries

Starting with Python 3.9, you can use the | operator to merge dictionaries.

dict1 = {'a': 1, 'b': 2}
dict2 = {'b': 3, 'c': 4}
merged_dict = dict1 | dict2
print(merged_dict)  

#clcoding.com
{'a': 1, 'b': 3, 'c': 4}
Dictionary Views
The keys, values, and items methods return dictionary view objects, which are dynamic and reflect changes in the dictionary.

my_dict = {'name': 'Alice', 'age': 25}
keys_view = my_dict.keys()
print(keys_view)  
my_dict['city'] = 'New York'
print(keys_view) 

#clcoding.com
dict_keys(['name', 'age'])
dict_keys(['name', 'age', 'city'])

Default Values with get and defaultdict

Using the get method, you can provide a default value if the key is not found.

my_dict = {'name': 'Alice'}
print(my_dict.get('age', 'Not Found'))  
Not Found
With defaultdict from the collections module, you can provide default values for missing keys.

from collections import defaultdict

dd = defaultdict(int)
dd['a'] += 1
print(dd)  

#clcoding.com
defaultdict(<class 'int'>, {'a': 1})


Dictionary Comprehensions

Just like list comprehensions, you can create dictionaries using dictionary comprehensions.

squares = {x: x*x for x in range(6)}
print(squares)  

#clcoding.com
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Iterating Through Dictionaries

You can iterate through keys, values, or key-value pairs in a dictionary.

my_dict = {'name': 'Alice', 'age': 25}
for key in my_dict:
    print(key)  

for value in my_dict.values():
    print(value)  

for key, value in my_dict.items():
    print(key, value)  

#clcoding.com
name
age
Alice
25
name Alice
age 25

Keys Must Be Immutable and Unique

The keys in a dictionary must be immutable types (like strings, numbers, or tuples) and must be unique.

my_dict = {(1, 2): 'tuple key', 'name': 'Alice', 3.14: 'pi'}
print(my_dict)  

#clcoding.com
{(1, 2): 'tuple key', 'name': 'Alice', 3.14: 'pi'}

Efficient Lookup Time

Dictionaries have average O(1) time complexity for lookups, insertions, and deletions due to their underlying hash table implementation.

my_dict = {'a': 1, 'b': 2, 'c': 3}
print(my_dict['b'])  

#clcoding.com
2


Dynamic and Mutable

Dictionaries are mutable, which means you can change their content without changing their identity.

my_dict = {'name': 'Alice', 'age': 25}
my_dict['age'] = 26
my_dict['city'] = 'New York'
print(my_dict)  

#clcoding.com
{'name': 'Alice', 'age': 26, 'city': 'New York'}

0 Comments:

Post a Comment

Popular Posts

Categories

100 Python Programs for Beginner (53) AI (34) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (173) C (77) C# (12) C++ (82) Course (67) Coursera (226) Cybersecurity (24) data management (11) Data Science (128) Data Strucures (8) Deep Learning (20) Django (14) Downloads (3) edx (2) Engineering (14) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Google (34) Hadoop (3) HTML&CSS (47) IBM (25) IoT (1) IS (25) Java (93) Leet Code (4) Machine Learning (59) Meta (22) MICHIGAN (5) microsoft (4) Nvidia (3) Pandas (4) PHP (20) Projects (29) Python (932) Python Coding Challenge (364) Python Quiz (25) Python Tips (2) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (3) Software (17) SQL (42) UX Research (1) web application (8) Web development (2) web scraping (2)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses