Monday, 13 May 2024

Python Libraries for Financial Analysis and Portfolio Management

 



import statsmodels.api as sm
import numpy as np

# Generate some sample data
x = np.random.rand(100)
y = 2 * x + np.random.randn(100)

# Fit a linear regression model
model = sm.OLS(y, sm.add_constant(x)).fit()

print("Regression coefficients:", model.params)
print("R-squared:", model.rsquared)

#clcoding.com 
import pandas as pd

# Create a simple DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],
        'Age': [25, 30, 35],
        'Salary': [50000, 60000, 70000]}
df = pd.DataFrame(data)

# Perform data analysis
print("DataFrame head:")
print(df.head())
print("\nAverage salary:", df['Salary'].mean())

#clcoding.com 
import numpy as np

# Create a simple array
arr = np.array([1, 2, 3, 4, 5])

# Perform numerical operations
print("Sum:", np.sum(arr))
print("Mean:", np.mean(arr))
print("Standard deviation:", np.std(arr))

#clcoding.com 
from ibapi.client import EClient
from ibapi.wrapper import EWrapper

class MyWrapper(EWrapper):
    def __init__(self):
        super().__init__()

class MyClient(EClient):
    def __init__(self, wrapper):
        EClient.__init__(self, wrapper)

app = MyClient(MyWrapper())
app.connect("127.0.0.1", 7497, clientId=1)

app.run()

#clcoding.com 
import numpy as np
from scipy import optimize

# Define a simple objective function
def objective(x):
    return x**2 + 10*np.sin(x)

# Optimize the objective function
result = optimize.minimize(objective, x0=0)

print("Minimum value found at:", result.x)
print("Objective function value at minimum:", result.fun)

#clcoding.com 
from riskfolio.Portfolio import Portfolio

# Create a simple portfolio
data = {'Asset1': [0.05, 0.1, 0.15],
        'Asset2': [0.08, 0.12, 0.18],
        'Asset3': [0.06, 0.11, 0.14]}
portfolio = Portfolio(returns=data)

# Perform portfolio optimization
portfolio.optimize()

print("Optimal weights:", portfolio.w)
print("Expected return:", portfolio.mu)
print("Volatility:", portfolio.sigma)

#clcoding.com 

0 Comments:

Post a Comment

Popular Posts

Categories

AI (33) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (146) C (77) C# (12) C++ (82) Course (67) Coursera (198) Cybersecurity (24) data management (11) Data Science (106) Data Strucures (8) Deep Learning (13) Django (14) Downloads (3) edx (2) Engineering (14) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Google (21) Hadoop (3) HTML&CSS (47) IBM (25) IoT (1) IS (25) Java (93) Leet Code (4) Machine Learning (46) Meta (18) MICHIGAN (5) microsoft (4) Nvidia (1) Pandas (3) PHP (20) Projects (29) Python (893) Python Coding Challenge (285) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (2) Software (17) SQL (42) UX Research (1) web application (8)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses