import matplotlib.pyplot as plt
import numpy as np
# Generate sample data
data = np.random.rand(10, 10)
# List of colormaps to demonstrate
colormaps = [
'viridis', # Sequential
'plasma', # Sequential
'inferno', # Sequential
'magma', # Sequential
'cividis', # Sequential
'PiYG', # Diverging
'PRGn', # Diverging
'BrBG', # Diverging
'PuOr', # Diverging
'Set1', # Qualitative
'Set2', # Qualitative
'tab20', # Qualitative
'hsv', # Cyclic
'twilight', # Cyclic
'twilight_shifted' # Cyclic
]
# Create subplots to display colormaps
fig, axes = plt.subplots(nrows=5, ncols=3, figsize=(15, 20))
# Flatten axes array for easy iteration
axes = axes.flatten()
# Loop through colormaps and plot data
for ax, cmap in zip(axes, colormaps):
im = ax.imshow(data, cmap=cmap)
ax.set_title(cmap)
plt.colorbar(im, ax=ax)
# Adjust layout to prevent overlap
plt.tight_layout()
# Show the plot
plt.show()
Explanation:
Generate Sample Data:
data = np.random.rand(10, 10)This creates a 10x10 array of random numbers.
List of Colormaps:
- A list of colormap names is defined. Each name corresponds to a different colormap in Matplotlib.
Create Subplots:
fig, axes = plt.subplots(nrows=5, ncols=3, figsize=(15, 20))This creates a 5x3 grid of subplots to display multiple colormaps.
Loop Through Colormaps:
- The loop iterates through each colormap, applying it to the sample data and plotting it in a subplot.
Add Colorbar:
plt.colorbar(im, ax=ax)
This adds a colorbar to each subplot to show the mapping of data values to colors.
Adjust Layout and Show Plot:
plt.tight_layout() plt.show()These commands adjust the layout to prevent overlap and display the plot.
Choosing Colormaps
- Sequential: Good for data with a clear order or progression.
- Diverging: Best for data with a critical midpoint.
- Qualitative: Suitable for categorical data.
- Cyclic: Ideal for data that wraps around, such as angles.
By selecting appropriate colormaps, you can enhance the visual representation of your data, making it easier to understand and interpret.
0 Comments:
Post a Comment