Sunday, 4 August 2024

4 Python Mistakes That Make You Look Like a Beginner (And How to Avoid Them)



 1. Using Mutable Default Arguments

Mistake:


def add_item(item, items=[]):

    items.append(item)

    return items

Problem: Default mutable arguments, like lists or dictionaries, retain changes between function calls, which can lead to unexpected behavior.


Fix:


def add_item(item, items=None):

    if items is None:

        items = []

    items.append(item)

    return items


#clcoding.com



2. Not Using List Comprehensions

Mistake:


result = []

for i in range(10):

    result.append(i * 2)

Problem: This approach is verbose and less efficient than it could be.


Fix:


result = [i * 2 for i in range(10)]


#clcoding.com

Explanation: List comprehensions are more Pythonic, concise, and often faster.



3. Misunderstanding Python’s Scope Rules (LEGB Rule)

Mistake:


x = 10


def example():

    print(x)

    x = 5

example()

Problem: This raises an UnboundLocalError because Python considers x inside example() as a local variable due to the assignment.


Fix:


x = 10


def example():

    global x

    print(x)

    x = 5

example()

#clcoding.com



4. Using print() for Debugging Instead of Proper Debugging Tools

Mistake:


def calculate(x):

    print(f"Debug: x = {x}")

    return x * 2


result = calculate(5)

Problem: Relying on print() statements for debugging can clutter code and is less efficient.


Fix:


def calculate(x):

    return x * 2


result = calculate(5)


# Use a debugger for inspection

import pdb; pdb.set_trace()


#clcoding.com

 

0 Comments:

Post a Comment

Popular Posts

Categories

100 Python Programs for Beginner (3) AI (33) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (146) C (77) C# (12) C++ (82) Course (67) Coursera (205) Cybersecurity (24) data management (11) Data Science (109) Data Strucures (8) Deep Learning (13) Django (14) Downloads (3) edx (2) Engineering (14) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Google (27) Hadoop (3) HTML&CSS (47) IBM (25) IoT (1) IS (25) Java (93) Leet Code (4) Machine Learning (50) Meta (18) MICHIGAN (5) microsoft (4) Nvidia (1) Pandas (3) PHP (20) Projects (29) Python (898) Python Coding Challenge (285) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (2) Software (17) SQL (42) UX Research (1) web application (8)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses