Sunday, 5 January 2025

Python Coding Challange - Question With Answer(01060125)

 


Step-by-Step Explanation:

  1. Importing NumPy:


    import numpy as np
    • This imports the NumPy library, which provides support for working with arrays and performing mathematical operations like dot products.
  2. Creating Arrays:

    a = np.array([1, 2, 3, 4])
    b = np.array([4, 3, 2, 1])
    • Two 1D NumPy arrays a and b are created:
        a = [1, 2, 3, 4]
        b = [4, 3, 2, 1]
  3. Dot Product Calculation:


    np.dot(a, b)
    • The dot product of two 1D arrays is calculated as:

      dot product=a[0]b[0]+a[1]b[1]+a[2]b[2]+a[3]b[3]\text{dot product} = a[0] \cdot b[0] + a[1] \cdot b[1] + a[2] \cdot b[2] + a[3] \cdot b[3]
    • Substituting the values of a and b:

      dot product=(14)+(23)+(32)+(41)\text{dot product} = (1 \cdot 4) + (2 \cdot 3) + (3 \cdot 2) + (4 \cdot 1)
    • Perform the calculations:

      dot product=4+6+6+4=20\text{dot product} = 4 + 6 + 6 + 4 = 20
  4. Printing the Result:


    print(np.dot(a, b))
    • The result of the dot product, 20, is printed to the console.

Final Output:

20

Key Points:

  • The dot product of two vectors is a scalar value that represents the sum of the products of corresponding elements.
  • In NumPy, np.dot() computes the dot product of two 1D arrays, 2D matrices, or a combination of arrays and matrices.

0 Comments:

Post a Comment

Popular Posts

Categories

100 Python Programs for Beginner (78) AI (35) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (179) C (77) C# (12) C++ (82) Course (67) Coursera (231) Cybersecurity (24) data management (11) Data Science (129) Data Strucures (8) Deep Learning (21) Django (14) Downloads (3) edx (2) Engineering (14) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Google (34) Hadoop (3) HTML Quiz (1) HTML&CSS (47) IBM (30) IoT (1) IS (25) Java (93) Leet Code (4) Machine Learning (61) Meta (22) MICHIGAN (5) microsoft (4) Nvidia (4) Pandas (4) PHP (20) Projects (29) Python (951) Python Coding Challenge (394) Python Quiz (47) Python Tips (3) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (4) Software (17) SQL (42) UX Research (1) web application (8) Web development (4) web scraping (2)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses