Thursday, 6 March 2025

Advanced scikit-learn: Take Your ML Skills to the Next Level!

 


1️⃣ Feature Scaling & Normalization

  • Many ML models perform better with scaled data!
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

2️⃣ Hyperparameter Tuning with GridSearchCV

  • Find the best model parameters automatically!

from sklearn.model_selection import GridSearchCV
params = {'n_estimators': [50, 100, 150]}
grid = GridSearchCV(RandomForestClassifier(), param_grid=params, cv=5)
grid.fit(X_train, y_train)
print(grid.best_params_)

3️⃣ Cross-Validation for Reliable Evaluation


from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X_train, y_train, cv=5)
print("Average accuracy:", scores.mean())

4️⃣ Dimensionality Reduction with PCA

  • Reduce dataset features while retaining information

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_reduced = pca.fit_transform(X_train)

5️⃣ Handling Imbalanced Datasets with SMOTE

  • When one class has way more samples than another

from imblearn.over_sampling import SMOTE
smote = SMOTE()
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)

6️⃣ Model Pipelines for Automation

  • Combine preprocessing & training into one pipeline!

from sklearn.pipeline import Pipeline
pipe = Pipeline([('scaler', StandardScaler()), ('model', RandomForestClassifier())])
pipe.fit(X_train, y_train)

7️⃣ Feature Selection to Improve Performance


from sklearn.feature_selection import SelectKBest, f_classif
selector = SelectKBest(score_func=f_classif, k=2)
X_new = selector.fit_transform(X_train, y_train)

8️⃣ Deploying ML Models with Joblib

  • Save & reload your trained models!
import joblib
joblib.dump(model, 'model.pkl')
model = joblib.load('model.pkl')

0 Comments:

Post a Comment

Popular Posts

Categories

100 Python Programs for Beginner (96) AI (38) Android (24) AngularJS (1) Api (2) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (189) C (77) C# (12) C++ (83) Course (67) Coursera (248) Cybersecurity (25) Data Analysis (1) Data Analytics (2) data management (11) Data Science (142) Data Strucures (8) Deep Learning (21) Django (16) Downloads (3) edx (2) Engineering (14) Euron (29) Events (6) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Generative AI (9) Google (36) Hadoop (3) HTML Quiz (1) HTML&CSS (47) IBM (30) IoT (1) IS (25) Java (93) Java quiz (1) Leet Code (4) Machine Learning (78) Meta (22) MICHIGAN (5) microsoft (4) Nvidia (4) Pandas (4) PHP (20) Projects (29) pyth (1) Python (1014) Python Coding Challenge (452) Python Quiz (94) Python Tips (5) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (4) Software (17) SQL (42) UX Research (1) web application (8) Web development (4) web scraping (2)

Followers

Python Coding for Kids ( Free Demo for Everyone)