Sunday, 30 March 2025

Python Coding challenge - Day 420| What is the output of the following Python Code?









Code Explanation:

1. Importing the NumPy Library

import numpy as np

NumPy is a fundamental Python library for numerical computations.

It provides functions for working with arrays, matrices, linear algebra, and more.

The alias np is a common convention for importing NumPy.

2. Creating a Matrix Using NumPy

matrix = np.array([

    [4, 2],

    [1, 3]])

np.array() is used to create a NumPy array representing a matrix.

The matrix is a 2x2 square matrix with 2 rows and 2 columns.

3. Understanding Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors are fundamental concepts in linear algebra.

For a square matrix ๐ด

A, if there exists a scalar ๐œ†

ฮป and a non-zero vector ๐‘ฃ

v such that:๐ด⋅๐‘ฃ=๐œ†⋅๐‘ฃ

Then:

ฮป is called an eigenvalue

v is called the corresponding eigenvector.

Finding Eigenvalues Using NumPy

eigenvalues, eigenvectors = np.linalg.eig(matrix)

np.linalg.eig() is a NumPy function used to calculate eigenvalues and eigenvectors of a square matrix.

It returns:

eigenvalues: A NumPy array of the eigenvalues.

eigenvectors: A matrix where each column represents an eigenvector.

4. Rounding the Eigenvalues

print(np.round(eigenvalues, 2))

np.round() is used to round the eigenvalues to two decimal places for clearer output.

It makes results more readable and is especially useful for complex numbers.

5. Calculation of Eigenvalues (Manual Method)

The characteristic polynomial of matrix ๐ด

A is:det(A−ฮปI)=0 

Final Output

[5. 2.]



0 Comments:

Post a Comment

Popular Posts

Categories

100 Python Programs for Beginner (96) AI (39) Android (24) AngularJS (1) Api (2) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (197) C (77) C# (12) C++ (83) Course (67) Coursera (251) Cybersecurity (25) Data Analysis (3) Data Analytics (2) data management (12) Data Science (148) Data Strucures (9) Deep Learning (21) Django (16) Downloads (3) edx (2) Engineering (14) Euron (29) Events (6) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Generative AI (11) Google (36) Hadoop (3) HTML Quiz (1) HTML&CSS (47) IBM (30) IoT (1) IS (25) Java (93) Java quiz (1) Leet Code (4) Machine Learning (85) Meta (22) MICHIGAN (5) microsoft (4) Nvidia (4) Pandas (4) PHP (20) Projects (29) pyth (1) Python (1047) Python Coding Challenge (456) Python Quiz (118) Python Tips (5) Questions (2) R (70) React (6) Scripting (3) security (3) Selenium Webdriver (4) Software (17) SQL (42) UX Research (1) web application (8) Web development (4) web scraping (2)

Followers

Python Coding for Kids ( Free Demo for Everyone)