Showing posts with label AI. Show all posts
Showing posts with label AI. Show all posts

Saturday, 18 January 2025

AI Engineering: Building Applications with Foundation Models

 



"AI Engineering: Building Applications with Foundation Models" is a practical and insightful book authored by Chip Huyen, a well-known figure in machine learning and AI engineering. This book provides a comprehensive guide to leveraging foundation models, such as large language models (LLMs) and generative AI, to build scalable, impactful AI applications for real-world use cases.

What Are Foundation Models?

Foundation models are pre-trained AI models (like GPT, BERT, and Stable Diffusion) that are designed to be adaptable for a wide variety of downstream tasks, including natural language processing, computer vision, and more. This book focuses on the practical application of these powerful models.

Recent breakthroughs in AI have not only increased demand for AI products, they've also lowered the barriers to entry for those who want to build AI products. The model-as-a-service approach has transformed AI from an esoteric discipline into a powerful development tool that anyone can use. Everyone, including those with minimal or no prior AI experience, can now leverage AI models to build applications. In this book, author Chip Huyen discusses AI engineering: the process of building applications with readily available foundation models.

The book starts with an overview of AI engineering, explaining how it differs from traditional ML engineering and discussing the new AI stack. The more AI is used, the more opportunities there are for catastrophic failures, and therefore, the more important evaluation becomes. This book discusses different approaches to evaluating open-ended models, including the rapidly growing AI-as-a-judge approach.

AI application developers will discover how to navigate the AI landscape, including models, datasets, evaluation benchmarks, and the seemingly infinite number of use cases and application patterns. You'll learn a framework for developing an AI application, starting with simple techniques and progressing toward more sophisticated methods, and discover how to efficiently deploy these applications.

  • Understand what AI engineering is and how it differs from traditional machine learning engineering
  • Learn the process for developing an AI application, the challenges at each step, and approaches to address them
  • Explore various model adaptation techniques, including prompt engineering, RAG, fine-tuning, agents, and dataset engineering, and understand how and why they work
  • Examine the bottlenecks for latency and cost when serving foundation models and learn how to overcome them
  • Choose the right model, dataset, evaluation benchmarks, and metrics for your needs

Chip Huyen works to accelerate data analytics on GPUs at Voltron Data. Previously, she was with Snorkel AI and NVIDIA, founded an AI infrastructure startup, and taught Machine Learning Systems Design at Stanford. She's the author of the book Designing Machine Learning Systems, an Amazon bestseller in AI.

Core Focus of the Book

The book emphasizes:

AI Engineering Principles: It explores the discipline of AI engineering, which combines software engineering, machine learning, and DevOps to develop production-ready AI systems.

End-to-End Application Development: The book provides a roadmap for designing, developing, and deploying AI solutions using foundation models, including the integration of APIs and pipelines.

Evaluation and Monitoring: Chip Huyen also sheds light on techniques to evaluate the performance and fairness of AI models in dynamic and open-ended scenarios.

Adaptability and Scalability: It highlights how foundation models can be adapted for custom tasks and scaled to meet enterprise needs.

Who Is It For?

The book is targeted at:

AI practitioners and engineers looking to implement foundation models in their work.

Developers aiming to transition from machine learning prototyping to scalable production systems.

Students and professionals interested in understanding the practicalities of AI application development.


Why Is This Book Unique?

Focus on Foundation Models: It bridges the gap between the theoretical understanding of foundation models and their practical application in industry.

Real-World Insights: The author draws from her extensive experience building AI systems at scale, offering actionable advice and best practices.

Comprehensive Topics: It covers everything from technical aspects like pipeline design and API integration to broader themes such as ethical AI and responsible model usage.

Hard Copy: AI Engineering: Building Applications with Foundation Models

Kindle: AI Engineering: Building Applications with Foundation Models

Friday, 17 January 2025

Agentic AI - A Mordern Approach of Automation

 


The "Agentic AI: A Modern Approach of Automation" course delves into the cutting-edge intersection of artificial intelligence and automation. It emphasizes developing systems capable of autonomous decision-making, exploring advanced AI methodologies, frameworks, and real-world applications. Participants will learn to design, implement, and optimize AI-driven automation systems, focusing on scalability and efficiency. The course also examines the ethical considerations, challenges, and future trends of agentic AI.

The "Agentic AI: A Modern Approach to Automation" course explores how AI can be integrated into automation, enhancing its capabilities through advanced techniques. By focusing on cutting-edge practices, it enables learners to understand how autonomous systems can be designed to operate independently in various industries. The course addresses the challenges of AI-driven automation and its potential to transform tasks traditionally done by humans.

Key Features of the course:

Comprehensive AI Knowledge: Learn fundamental AI concepts and advanced agentic AI frameworks.

Practical Applications: Hands-on projects in diverse industries like robotics, healthcare, and finance.

Ethical and Societal Considerations: Understand the ethical challenges in implementing AI-driven automation.

Emerging Technologies: Integration of cutting-edge technologies such as IoT and blockchain for more scalable automation solutions.

Scalable Automation: Techniques for building systems that can be scaled to handle increasing complexity.

Hands-On Learning: Practical exercises and case studies for real-world implementation.

Future of AI: Insights into emerging AI trends and their potential impact on automation.

Interdisciplinary Approach: Combines AI with fields like machine learning, robotics, and ethics to create well-rounded solutions.


Future Enhancement of the Course:

Future enhancements for the Agentic AI: A Modern Approach to Automation course aim to keep it cutting-edge and aligned with industry needs. These include integrating advanced AI techniques like reinforcement learning for autonomous decision-making, offering industry-specific modules focusing on fields such as healthcare, robotics, and finance, and providing real-time collaboration projects with industry partners. Additionally, the course could delve deeper into AI regulations and governance, addressing the growing concern for ethical and transparent AI usage. Expanding on emerging technologies like IoT and blockchain integration will also enhance the scope of automation.

Advanced AI Techniques: Incorporation of more advanced methodologies such as reinforcement learning and deep reinforcement learning for autonomous decision-making.

Real-Time Automation Projects: More live projects where students can collaborate on real-world automation scenarios.

Industry-Specific Tracks: Modules dedicated to specific industries like smart cities or autonomous vehicles.

AI Regulation and Governance: Focus on legal and ethical regulations in AI-driven automation systems.

Advanced Learning Methods: Including cutting-edge techniques like deep learning, reinforcement learning, and hybrid models to build more sophisticated autonomous systems.

Sector-Specific Modules: Tailored tracks focusing on key industries such as healthcare, finance, and autonomous vehicles, where automation can revolutionize operations.

Real-Time Collaboration Projects: Integrating live industry projects for students to work on real-world automation challenges with companies.

AI Regulation: Adding a focus on AI governance, addressing challenges of accountability, transparency, and ethics in AI automation.

Emerging Technologies: Expanding content around IoT, edge computing, and blockchain integration, allowing AI systems to operate more effectively and securely in decentralized environments.

What you will learn

  • The fundamentals of Agentic AI and its importance in various industries.
  • Hands-on skills for building AI agents using open-source models like LLama-3.
  • Advanced tools like Open Interpreter and Perplexity AI for agent development.
  • Creating domain-specific agents for research, financial analysis, and content creation.
  • Exploring future trends, including GPT-4o and emerging technologies in Agentic AI.
  • Real-world applications and capstone projects leveraging Hugging Face models and other platforms.

Join Free : Agentic AI - A Mordern Approach of Automation

Conclusion:

The Agentic AI: A Modern Approach to Automation course offers an extensive understanding of how AI can drive autonomous systems for various industries. By exploring cutting-edge AI techniques, practical applications, and ethical considerations, the course equips learners with the necessary skills to create scalable and impactful automation solutions. It’s an essential resource for professionals seeking to enhance their careers in AI, machine learning, and automation, and for those who wish to integrate emerging technologies into real-world applications.

Saturday, 4 January 2025

IBM AI Developer Professional Certificate

 


IBM AI Developer Professional Certificate

Artificial intelligence (AI) has emerged as one of the most transformative technologies of the 21st century, reshaping industries, revolutionizing workflows, and redefining career paths. From enhancing customer experiences with AI-powered chatbots to optimizing supply chains using predictive analytics, AI’s potential is vast and continuously evolving. For individuals aspiring to harness this potential, gaining a strong foundation in AI concepts and tools is critical.

The Applied Artificial Intelligence Professional Certificate by IBM, offered on Coursera, stands out as a gateway to the world of AI. Designed with accessibility in mind, this program caters to both beginners and professionals who wish to explore AI's practical applications without requiring prior programming knowledge. What sets this certificate apart is its dual focus on theory and hands-on learning, enabling learners to not only understand AI concepts but also apply them in real-world scenarios.

  • This comprehensive program is ideal for anyone who:
  • Seeks to integrate AI solutions into their professional roles to boost productivity and innovation.
  • Aims to pivot to an AI-centric career, equipped with in-demand skills.
  • Desires a structured, yet flexible learning path backed by IBM’s decades of expertise in technology and AI innovation.

The certificate program covers the essentials of AI, from machine learning and natural language processing to building intelligent chatbots using IBM’s Watson services. With a curriculum that emphasizes practicality and ethics, learners will gain a holistic understanding of AI’s capabilities, limitations, and impact on society. Furthermore, its online, self-paced format ensures accessibility for learners worldwide, regardless of their schedules or commitments.

Embarking on this learning journey promises not only skill development but also the opportunity to earn a globally recognized credential that validates your proficiency in AI. The program is structured to empower learners to innovate, solve complex problems, and stay ahead in a rapidly evolving technological landscape.

Why Choose This Certificate?

IBM’s reputation in technology and innovation is unparalleled. With decades of pioneering research and enterprise solutions, IBM brings its expertise to this program. The certificate is tailored for individuals who want to understand and implement AI solutions without requiring prior programming experience. It’s ideal for:

Business Professionals: Learn how to integrate AI into workflows, automate processes, and enhance decision-making with AI tools.

Students and Career Changers: Build foundational knowledge to transition into the rapidly growing field of AI.

AI Enthusiasts: Gain exposure to industry-leading tools and techniques to turn ideas into practical AI solutions.

What you'll learn

  • Job-ready AI skills in just 6 months, plus practical experience and an industry-recognized certification employers are actively looking for
  • The fundamental concepts, key terms, building blocks, and applications of AI, encompassing generative AI
  • How to build generative AI-powered apps and chatbots using various programming frameworks and AI technologies
  • How to use Python and Flask to develop and deploy AI applications on the web

Key Features of the Program

The program is designed to cater to a diverse audience, from beginners to intermediate learners. Here’s a detailed breakdown of what sets it apart:

Comprehensive Curriculum:

The certificate includes six meticulously designed courses that provide a strong foundation in AI. You’ll learn about:

Machine Learning Basics: Understand core concepts such as supervised and unsupervised learning, algorithms, and model evaluation.

Natural Language Processing (NLP): Dive into techniques used to process and analyze human language data, a cornerstone of AI applications.

AI-Powered Chatbots: Learn to build chatbots using IBM Watson, exploring its Assistant, Discovery, and other AI services.

AI Ethics: Examine the ethical implications of AI, including bias, fairness, and responsible usage.

Hands-On Learning:

Practical, project-based learning ensures you’re not just consuming knowledge but actively applying it. Projects include:

Developing chatbots that interact seamlessly with users.

Using AI models to solve real-world problems such as sentiment analysis and data categorization.

Implementing machine learning workflows using Python.

Flexibility:

The program is entirely online and self-paced, making it accessible to learners with busy schedules. Whether you dedicate a few hours a week or study full-time, the flexibility ensures you can progress at your own pace.

Career Support:

Upon completion, you’ll earn a professional certificate recognized globally. The skills and projects you complete will strengthen your portfolio, making you more attractive to employers in technology-driven industries.

Benefits of Earning This Certificate

Skill Development: Master cutting-edge skills such as NLP, chatbot creation, and machine learning.

Credibility: The certificate is issued by IBM, a leader in AI innovation, and recognized by top employers.

Industry Relevance: Gain practical experience with tools like IBM Watson, ensuring you’re ready to tackle real-world challenges.

Networking Opportunities: Engage with peers, instructors, and a global community of learners through Coursera’s platform.

Career Advancement: Open doors to roles like AI Analyst, Data Scientist, and Machine Learning Engineer.

Join Free: IBM AI Developer Professional Certificate

Conclusion

The IBM Applied Artificial Intelligence Professional Certificate is more than just a learning program; it’s a transformative journey into the world of AI. With a curriculum grounded in real-world applications, you’ll acquire the skills, knowledge, and confidence to innovate and excel in your career. Whether you’re looking to upskill, pivot to a new career, or simply explore AI, this program offers a comprehensive and accessible pathway. Embrace the future of technology with IBM and Coursera today!


Tuesday, 17 December 2024

Web Scraping With GPT: Translate Foreign News Headlines

 



In a world brimming with diverse information, the ability to navigate, extract, and understand global content has become indispensable. The Coursera course “AI Web Scraping with GPT: Translating Foreign News Headlines,”  introduces learners to a groundbreaking approach that combines web scraping and AI-powered translation. This blog delves into the unique features and potential applications of this course.

Why This Course Stands Out

Designed for tech enthusiasts, beginners, and professionals alike, this course merges essential technical skills with practical applications. Rudi Hinds’ offering is particularly noteworthy for:

Focusing on Real-World Relevance: The course centers on scraping and translating foreign news headlines, a practical use case with applications in journalism, market research, and global communication.

Utilizing Advanced AI Tools: Learners are introduced to OpenAI’s GPT technology, renowned for its powerful natural language processing and translation capabilities.

Step-by-Step Learning: The course ensures accessibility by breaking down complex tasks into manageable steps, making it ideal for learners with basic Python skills.

Course Overview

1. Foundations of Web Scraping

Participants are guided through the fundamentals of web scraping using Python libraries like BeautifulSoup. This foundational skill allows users to extract structured data, such as foreign news headlines, from various websites.

2. Integrating GPT for Translation

A standout feature of the course is its integration of GPT for translating foreign headlines into the learner’s preferred language. Learners gain hands-on experience working with OpenAI’s API to:

  • Generate accurate translations.
  • Maintain contextual integrity across different languages.
  • Experiment with parameters to fine-tune the output.

3. Storing and Analyzing Data

The course also covers data organization and storage, providing learners with the skills to compile, sort, and analyze translated headlines. This opens doors to insights into global trends and narratives.

4. Practical Applications

By the end of the course, participants can:

  • Automate multilingual data collection.
  • Analyze media trends across languages and regions.
  • Apply these techniques to personal, academic, or professional projects.

What You Will Gain

The course equips learners with a versatile skill set that combines programming, AI, and global communication. Key takeaways include:

Technical Expertise: Hands-on experience with Python, BeautifulSoup, and OpenAI’s GPT.

Global Awareness: An ability to explore and understand foreign media content in your native language.

Scalable Insights: Skills that can be adapted to various domains, from business intelligence to policy research.

Real-World Applications

1. Journalism and Media

Journalists can use these skills to monitor and analyze international news stories, ensuring diverse coverage and perspectives.

2. Business Intelligence

Marketers and business strategists can uncover global trends, identify opportunities, and assess risks by translating and analyzing international headlines.

3. Education and Research

Academics and students can explore multilingual data sets, enabling cross-cultural studies and fostering global insights.

Why Learn AI-Powered Web Scraping and Translation?

With the proliferation of information online, the ability to automate data extraction and translate it effectively is a game-changer. Rudi Hinds’ course provides an accessible pathway to harnessing these technologies, empowering learners to:

Break language barriers.

Analyze data at scale.

Gain a competitive edge in an increasingly data-driven world.

Join Free: Web Scraping With GPT: Translate Foreign News Headlines

Conclusion:

 “AI Web Scraping with GPT: Translating Foreign News Headlines,” is a must-try for anyone looking to explore the intersection of AI and data. Whether you’re a tech enthusiast, researcher, or professional aiming to stay ahead of the curve, this course provides a robust foundation in one of the most impactful applications of AI today.



Wednesday, 20 November 2024

AI Learning Hub - Lifetime Learning Access



What will you get?


✔ 10+ hours of AI content from the fundamentals to advanced.


✔ Hands-on machine learning and deep learning projects with step-by-step coding instructions.


✔ Real-world end-to-end projects to help you build a professional AI portfolio.


✔ A private collaborative community of AI learners and professionals.


✔ Receive feedback on your projects from peers and community members.


✔ Direct access to your instructor.


✔ Lifetime access to every past and future courses and content.


Jon here : AI Learning Hub - Lifetime Learning Access

30-Day Free Trial – No Risk, No Problem!

Join today and enjoy a full 30-day free trial with complete access to all content. No strings attached – experience the program and decide if it's right for you. If you're not satisfied, you can cancel at any time during the trial with zero cost. We’re confident you’ll love it, but you’ve got nothing to lose with our risk-free guarantee!

Program Syllabus

The AI Learning Hub is your ongoing path to mastering AI. This syllabus outlines the key topics you’ll cover throughout the program. Each section is designed to build on the last, ensuring you develop both foundational and advanced skills through practical, hands-on learning. As part of this continuous cohort, new content will be added regularly, so you’ll always be learning the latest in AI.

This schedule is flexible and may change depending on the learning pace of everyone. But don’t worry—once the materials are published, you can go back and learn at your own speed whenever you want.

Phase 1: Python Programming (Starting October)

  • Data Types & Variables: Understand basic data types and variables.

  • Loops & Iterators: Learn how to iterate over data efficiently.

  • Functions & Lambdas: Write reusable code and anonymous functions.

  • Lists, Tuples, Sets, Dictionaries: Work with core Python data structures.

  • Conditionals: Make decisions using if, elif, and else.

  • Exception Handling: Handle errors gracefully.

  • Classes & OOP: Grasp object-oriented programming, inheritance, polymorphism, and encapsulation.

Phase 2: Data Analysis with Pandas

  • Series & DataFrames: Understand the building blocks of Pandas.

  • Editing & Retrieving Data: Learn data selection and modification techniques.

  • Importing Data: Import data from CSV, Excel, and databases.

  • Grouping Data: Use groupby for aggregate operations.

  • Merging & Joining Data: Combine datasets efficiently.

  • Sorting & Filtering: Organize and retrieve data.

  • Applying Functions to Data: Use functions to manipulate and clean data.

Phase 3: Data Visualization with Matplotlib

  • Basic Plotting: Create line plots, scatter plots, and histograms.

  • Bar Charts & Pie Charts: Display categorical data.

  • Time Series Plots: Visualize data over time.

  • Live Data Plotting: Create dynamic visualizations.

Phase 4: Numerical Computing with NumPy

  • Creating Arrays: Learn about arrays and their manipulation.

  • Array Indexing & Slicing: Access and modify elements in arrays.

  • Universal Functions: Perform fast element-wise operations on arrays.

  • Linear Algebra & Statistics Functions: Apply matrix operations and statistical computations.

Phase 5: Machine Learning Fundamentals (with Projects)

  • ML Life Cycle: Understand the workflow of building machine learning systems.

  • Key Algorithms: Explore algorithms like Linear Regression, Decision Trees, Random Forests, and K-Nearest Neighbors.

  • Evaluation Metrics: Learn about precision, recall, F1-scores, and the importance of model evaluation.

  • Overfitting & Underfitting: Learn how to handle data-related challenges.

  • Projects: Apply your knowledge through hands-on projects, solving real-world problems.

Phase 6: Deep Learning Fundamentals (with Projects)

  • Neural Networks: Learn how artificial neural networks work.

  • Activation Functions: Explore functions like Sigmoid, ReLU, and Tanh.

  • Convolutional Neural Networks (CNNs): Understand image-based models and apply them to real-world data.

  • Recurrent Neural Networks (RNNs) & LSTMs: Work with sequential data for time series or text.

  • Hyperparameter Tuning & Optimization: Fine-tune models for better performance.

  • Projects: Implement real-world deep learning models and deploy them into production environments.

Phase 7: Model Deployment & MLOps

  • Model Deployment Strategies: Learn how to deploy models using Flask, FastAPI, and cloud platforms.

  • Docker & Kubernetes: Containerize your applications and deploy them at scale.

  • Kubeflow: Set up workflows for automating ML pipelines.

  • MLflow: Track experiments and manage the machine learning lifecycle.

  • Airflow: Manage data workflows and model pipelines.

  • Cloud-Based Deployment: Deploy your models on platforms like AWS, GCP, and Azure.

  • Monitoring & Logging: Use tools like Prometheus and Grafana to monitor model performance and ensure they remain accurate over time.

  • CI/CD: Automate the deployment of machine learning models using CI/CD pipelines.

Phase 8: End-to-End Machine Learning Projects

  • Complete ML Pipelines: Learn how to build a fully functional machine learning pipeline from data collection to deployment.

  • Data Preprocessing: Clean, process, and prepare data for machine learning models.

  • Model Building & Training: Implement and train machine learning models tailored to real-world scenarios.

  • Model Deployment: Deploy machine learning models into production environments, integrating with APIs and cloud services.

  • Monitoring & Maintenance: Understand how to monitor model performance over time and retrain models as needed.

Advanced and Custom Topics

  • Advanced NLP & Transformers: Dive deep into cutting-edge natural language processing techniques and transformer architectures.

  • Generative AI Models: Explore AI models that generate text, images, and audio, including GANs and diffusion models.

  • Custom AI Solutions: Learn how to customize AI models for specialized tasks and industries.

  • Suggest a Topic: You can suggest any advanced topics or areas of interest, and we will explore them together as part of the curriculum.

Wednesday, 13 November 2024

Google AI Essentials

 


Unlock the Power of AI with Google’s AI Essentials Course on Coursera

Artificial Intelligence (AI) is reshaping industries, driving innovation, and solving complex challenges around the globe. As AI becomes an essential part of the tech landscape, learning its core principles has become crucial for both beginners and professionals. Google’s AI Essentials course on Coursera is designed to introduce you to the fundamentals of AI and equip you with the knowledge and skills needed to get started.

If you’re curious about AI and want to learn how it’s used to transform real-world applications, this course offers a comprehensive, beginner-friendly introduction. Let’s dive into what makes this course special and why it’s the perfect starting point for your AI journey.


Why Learn AI?

AI has rapidly expanded beyond research labs into everyday life. It powers everything from personal voice assistants and recommendation engines to complex medical diagnostics and financial forecasting. AI literacy is becoming a vital skill across industries, making it increasingly valuable for professionals in any field. Learning AI basics gives you an edge in understanding and working with the tools that are shaping the future.


About Google’s AI Essentials Course

Google, a global leader in AI, has crafted the AI Essentials course on Coursera to help beginners gain foundational knowledge in this field. Created with clarity and simplicity in mind, the course provides learners with an accessible introduction to AI concepts, helping you understand what AI is, its potential, and how it’s applied in the world today.

Key Highlights of the Course:

  1. Beginner-Friendly: No prior experience with AI or programming is required, making it ideal for anyone curious about AI.
  2. Real-World Applications: You’ll learn how AI solves everyday problems, making it easier to connect theoretical concepts to practical uses.
  3. Flexible Schedule: Being online and self-paced, this course allows you to learn on your own time and at your own pace.

What You’ll Learn

The Google AI Essentials course covers several foundational topics essential to understanding AI and how it’s changing industries. Here’s a quick look at what you’ll learn:

  • Understanding AI: Learn what AI is and isn’t, exploring the different branches, such as machine learning and deep learning.
  • AI and Everyday Life: Discover how AI powers common applications like recommendation engines, smart assistants, and image recognition systems.
  • Intro to Machine Learning: Get introduced to machine learning, a critical subset of AI, and learn about supervised and unsupervised learning techniques.
  • Real-World Applications: Understand how AI is transforming sectors like healthcare, finance, and entertainment, showing the vast impact AI has on society.

Real-World Applications of AI

One of the standout features of this course is its focus on real-world applications, making it relatable for learners from any background. By the end of the course, you’ll gain insights into how AI applications solve problems across various industries:

  • Healthcare: AI assists in diagnosing diseases, personalizing treatment plans, and optimizing healthcare operations.
  • Finance: Machine learning models help detect fraudulent transactions, assess credit risk, and automate trading strategies.
  • Retail: AI enhances customer experiences with personalized recommendations, targeted marketing, and improved inventory management.
  • Entertainment: AI algorithms power recommendation systems in streaming platforms, shaping user experience and content discovery.

This approach not only makes learning more engaging but also provides you with a broader understanding of how AI impacts different sectors.


Why Choose Google’s AI Essentials Course on Coursera?

  1. Industry Leader: Google is at the forefront of AI research and applications. Learning directly from Google’s experts provides you with insights and approaches grounded in cutting-edge practices.
  2. Hands-On Experience: Although designed for beginners, the course includes practical examples and scenarios to deepen your understanding of AI concepts.
  3. Career Boost: With AI playing a critical role in the future of work, having a certification from Google on Coursera enhances your resume, showing employers that you understand AI fundamentals.

Getting Started

Whether you're a professional looking to enhance your skillset, a student aiming to learn about AI, or just curious about technology, the Google AI Essentials course is a fantastic place to start. It’s a well-rounded introduction to AI fundamentals and applications, and it prepares you to explore further in the world of AI.

Learn more and enroll here: Coursera Google AI Essentials Course.


Final Thoughts

Artificial Intelligence is more than just a trend; it's a transformative technology that’s changing the world. Google’s AI Essentials course on Coursera offers a clear, beginner-friendly path to understanding AI’s impact, applications, and potential. By completing this course, you’ll gain a foundational knowledge that can serve as a stepping stone to advanced AI studies or applications in your own career.

Whether you’re a beginner or a professional looking to expand your skills, this course will give you the insights you need to understand AI's transformative potential. Embrace the future of technology—start your AI journey today!

Join Free: Google AI Essentials


Sunday, 6 October 2024

Learn to code with AI

 

What you'll learn

How to use AI to build web apps without any programming knowledge

How to deploy your web apps to the web

The very basics of HTML, CSS, and JavaScript

There are 3 modules in this course

Imagine waking up tomorrow as a web developer. What would you want to build?

With AI tools like ChatGPT, you're already a developer, regardless of your experience, if you know how to work with them.

So in this course, you'll build functional, interactive front-end projects while learning how to write effective prompts and debug and refine your code with the help of AI.

No coding experience needed! We'll focus on helping you prototype and build projects with AI's assistance, turning you from a non-coder into a capable problem solver.

By the end of this course, you'll have a collection of mini-projects, newly acquired skills, and a solid foundation to keep building with AI.

You'll work on various projects using HTML, CSS, and JavaScript. Let's do this!

Join for Free: Learn to code with AI

AI for Everyday Life

 

What you'll learn

Craft an input and output using the prompt engineering methods for generative AI

Apply your knowledge of one prompt engineering method to a real-world scenario

Articulate two methods of prompt engineering for everyday uses.


There are 2 modules in this course

This course takes the mystery generative artificial intelligence (gen-AI) and explains its uses straightforward language for people who want to use it in their everyday lives. 

Knowing how to describe and use generative AI effectively is an Important skillset to successfully engaging in all types of personal communication, from social media posts to emails and blogs. Learners will gain a clear understanding what generative AI is and learn the fundamental skills required to use gen-AI ethically and effectively. Participants will be provided tested methods for prompting an AI Assistant, such as ChatGPT, Claude, and Gemini to yield useful results.

Join for Free: AI for Everyday Life

Wednesday, 28 August 2024

Developing AI Applications with Python and Flask

 


What you'll learn

Describe the steps and processes involved in creating a Python application including the application development lifecycle 

Create Python modules, run unit tests, and package applications while ensuring the PEP8 coding best practices

Explain the features of Flask and deploy applications on the web using the Flask framework

Create and deploy an AI-based application onto a web server using IBM Watson AI Libraries and Flask

Join Free: Developing AI Applications with Python and Flask

There are 3 modules in this course

This mini course is intended to apply basic Python skills for developing Artificial Intelligence (AI) enabled applications. In this hands-on project you will assume the role of a developer and perform tasks including:  

- Develop functions and application logic 
- Exchange data using Watson AI libraries
- Write unit tests, and 
- Package the application for distribution. 

You will demonstrate your foundational Python skills by employing different techniques to develop web applications and AI powered solutions. After completing this course, you will have added another project to your portfolio and gained the confidence to begin developing AI enabled applications using Python and Flask, Watson AI libraries, build and run unit tests, and package the application for distribution out in the real world.

Saturday, 29 June 2024

Modern Computer Vision with PyTorch - Second Edition: A practical roadmap from deep learning fundamentals to advanced applications and Generative AI

 


The definitive computer vision book is back, featuring the latest neural network architectures and an exploration of foundation and diffusion models

Purchase of the print or Kindle book includes a free eBook in PDF format

Key Features

- Understand the inner workings of various neural network architectures and their implementation, including image classification, object detection, segmentation, generative adversarial networks, transformers, and diffusion models

- Build solutions for real-world computer vision problems using PyTorch

- All the code files are available on GitHub and can be run on Google Colab

Book Description

Whether you are a beginner or are looking to progress in your computer vision career, this book guides you through the fundamentals of neural networks (NNs) and PyTorch and how to implement state-of-the-art architectures for real-world tasks.

The second edition of Modern Computer Vision with PyTorch is fully updated to explain and provide practical examples of the latest multimodal models, CLIP, and Stable Diffusion.

You'll discover best practices for working with images, tweaking hyperparameters, and moving models into production. As you progress, you'll implement various use cases for facial keypoint recognition, multi-object detection, segmentation, and human pose detection. This book provides a solid foundation in image generation as you explore different GAN architectures. You'll leverage transformer-based architectures like ViT, TrOCR, BLIP2, and LayoutLM to perform various real-world tasks and build a diffusion model from scratch. Additionally, you'll utilize foundation models' capabilities to perform zero-shot object detection and image segmentation. Finally, you'll learn best practices for deploying a model to production.

By the end of this deep learning book, you'll confidently leverage modern NN architectures to solve real-world computer vision problems.

What you will learn

- Get to grips with various transformer-based architectures for computer vision, CLIP, Segment-Anything, and Stable Diffusion, and test their applications, such as in-painting and pose transfer

- Combine CV with NLP to perform OCR, key-value extraction from document images, visual question-answering, and generative AI tasks

- Implement multi-object detection and segmentation

- Leverage foundation models to perform object detection and segmentation without any training data points

- Learn best practices for moving a model to production

Who this book is for

This book is for beginners to PyTorch and intermediate-level machine learning practitioners who want to learn computer vision techniques using deep learning and PyTorch. It's useful for those just getting started with neural networks, as it will enable readers to learn from real-world use cases accompanied by notebooks on GitHub. Basic knowledge of the Python programming language and ML is all you need to get started with this book. For more experienced computer vision scientists, this book takes you through more advanced models in the latter part of the book.

Table of Contents

- Artificial Neural Network Fundamentals

- PyTorch Fundamentals

- Building a Deep Neural Network with PyTorch

- Introducing Convolutional Neural Networks

- Transfer Learning for Image Classification

- Practical Aspects of Image Classification

- Basics of Object Detection

- Advanced Object Detection

- Image Segmentation

- Applications of Object Detection and Segmentation

- Autoencoders and Image Manipulation

- Image Generation Using GANs


SOFT Copy: Modern Computer Vision with PyTorch: A practical roadmap from deep learning fundamentals to advanced applications and Generative AI

Hard Copy: Modern Computer Vision with PyTorch - Second Edition: A practical roadmap from deep learning fundamentals to advanced applications and Generative AI 2nd ed. Edition by V Kishore Ayyadevara (Author), Yeshwanth Reddy (Author)

Thursday, 7 March 2024

Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT and other LLMs

 


Get to grips with the LangChain framework from theory to deployment and develop production-ready applications.

Code examples regularly updated on GitHub to keep you abreast of the latest LangChain developments.

Purchase of the print or Kindle book includes a free PDF eBook.

Key Features

Learn how to leverage LLMs' capabilities and work around their inherent weaknesses

Delve into the realm of LLMs with LangChain and go on an in-depth exploration of their fundamentals, ethical dimensions, and application challenges

Get better at using ChatGPT and GPT models, from heuristics and training to scalable deployment, empowering you to transform ideas into reality

Book Description

ChatGPT and the GPT models by OpenAI have brought about a revolution not only in how we write and research but also in how we can process information. This book discusses the functioning, capabilities, and limitations of LLMs underlying chat systems, including ChatGPT and Bard. It also demonstrates, in a series of practical examples, how to use the LangChain framework to build production-ready and responsive LLM applications for tasks ranging from customer support to software development assistance and data analysis - illustrating the expansive utility of LLMs in real-world applications.

Unlock the full potential of LLMs within your projects as you navigate through guidance on fine-tuning, prompt engineering, and best practices for deployment and monitoring in production environments. Whether you're building creative writing tools, developing sophisticated chatbots, or crafting cutting-edge software development aids, this book will be your roadmap to mastering the transformative power of generative AI with confidence and creativity.

What you will learn

Understand LLMs, their strengths and limitations

Grasp generative AI fundamentals and industry trends

Create LLM apps with LangChain like question-answering systems and chatbots

Understand transformer models and attention mechanisms

Automate data analysis and visualization using pandas and Python

Grasp prompt engineering to improve performance

Fine-tune LLMs and get to know the tools to unleash their power

Deploy LLMs as a service with LangChain and apply evaluation strategies

Privately interact with documents using open-source LLMs to prevent data leaks

Who this book is for

The book is for developers, researchers, and anyone interested in learning more about LLMs. Whether you are a beginner or an experienced developer, this book will serve as a valuable resource if you want to get the most out of LLMs and are looking to stay ahead of the curve in the LLMs and LangChain arena.

Basic knowledge of Python is a prerequisite, while some prior exposure to machine learning will help you follow along more easily.

Table of Contents

What Is Generative AI?

LangChain for LLM Apps

Getting Started with LangChain

Building Capable Assistants

Building a Chatbot like ChatGPT

Developing Software with Generative AI

LLMs for Data Science

Customizing LLMs and Their Output

Generative AI in Production

The Future of Generative Models

Hard Copy: Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT and other LLMs

Developing Kaggle Notebooks: Pave your way to becoming a Kaggle Notebooks Grandmaster

 

Printed in Color

Develop an array of effective strategies and blueprints to approach any new data analysis on the Kaggle platform and create Notebooks with substance, style and impact

Leverage the power of Generative AI with Kaggle Models

Purchase of the print or Kindle book includes a free PDF eBook

Key Features

Master the basics of data ingestion, cleaning, exploration, and prepare to build baseline models

Work robustly with any type, modality, and size of data, be it tabular, text, image, video, or sound

Improve the style and readability of your Notebooks, making them more impactful and compelling

Book Description

Developing Kaggle Notebooks introduces you to data analysis, with a focus on using Kaggle Notebooks to simultaneously achieve mastery in this fi eld and rise to the top of the Kaggle Notebooks tier. The book is structured as a sevenstep data analysis journey, exploring the features available in Kaggle Notebooks alongside various data analysis techniques.

For each topic, we provide one or more notebooks, developing reusable analysis components through Kaggle's Utility Scripts feature, introduced progressively, initially as part of a notebook, and later extracted for use across future notebooks to enhance code reusability on Kaggle. It aims to make the notebooks' code more structured, easy to maintain, and readable.

Although the focus of this book is on data analytics, some examples will guide you in preparing a complete machine learning pipeline using Kaggle Notebooks. Starting from initial data ingestion and data quality assessment, you'll move on to preliminary data analysis, advanced data exploration, feature qualifi cation to build a model baseline, and feature engineering. You'll also delve into hyperparameter tuning to iteratively refi ne your model and prepare for submission in Kaggle competitions. Additionally, the book touches on developing notebooks that leverage the power of generative AI using Kaggle Models.

What you will learn

Approach a dataset or competition to perform data analysis via a notebook

Learn data ingestion and address issues arising with the ingested data

Structure your code using reusable components

Analyze in depth both small and large datasets of various types

Distinguish yourself from the crowd with the content of your analysis

Enhance your notebook style with a color scheme and other visual effects

Captivate your audience with data and compelling storytelling techniques

Who this book is for

This book is suitable for a wide audience with a keen interest in data science and machine learning, looking to use Kaggle Notebooks to improve their skills and rise in the Kaggle Notebooks ranks. This book caters to:

Beginners on Kaggle from any background

Seasoned contributors who want to build various skills like ingestion, preparation, exploration, and visualization

Expert contributors who want to learn from the Grandmasters to rise into the upper Kaggle rankings

Professionals who already use Kaggle for learning and competing

Table of Contents

Introducing Kaggle and Its Basic Functions

Getting Ready for Your Kaggle Environment

Starting Our Travel - Surviving the Titanic Disaster

Take a Break and Have a Beer or Coffee in London

Get Back to Work and Optimize Microloans for Developing Countries

Can You Predict Bee Subspecies?

Text Analysis Is All You Need

Analyzing Acoustic Signals to Predict the Next Simulated Earthquake

Can You Find Out Which Movie Is a Deepfake?

Unleash the Power of Generative AI with Kaggle Models

Closing Our Journey: How to Stay Relevant and on Top

Hard Copy: Developing Kaggle Notebooks: Pave your way to becoming a Kaggle Notebooks Grandmaster



Wednesday, 6 March 2024

IBM AI Foundations for Business Specialization

 


Advance your subject-matter expertise

Learn in-demand skills from university and industry experts

Master a subject or tool with hands-on projects

Develop a deep understanding of key concepts

Earn a career certificate from IBM

Join Free: IBM AI Foundations for Business Specialization

Specialization - 3 course series

This specialization will explain and describe the overall focus areas for business leaders considering AI-based solutions for business challenges. The first course provides a business-oriented summary of technologies and basic concepts in AI. The second will introduce the technologies and concepts in data science. The third introduces the AI Ladder, which is a framework for understanding the work and processes that are necessary for the successful deployment of AI-based solutions.  

Applied Learning Project

Each of the courses in this specialization include Checks for Understanding, which are designed to assess each learner’s ability to understand the concepts presented as well as use those concepts in actual practice.  Specifically, those concepts are related to introductory knowledge regarding 1) artificial intelligence; 2) data science, and; 3) the AI Ladder.  

Thursday, 29 February 2024

Evaluations of AI Applications in Healthcare

 


What you'll learn

Principles and practical considerations for integrating AI into clinical workflows

Best practices of AI applications to promote fair and equitable healthcare solutions

Challenges of regulation of AI applications and which components of a model can be regulated

What standard evaluation metrics do and do not provide

Join Free: Evaluations of AI Applications in Healthcare

There are 7 modules in this course

With artificial intelligence applications proliferating throughout the healthcare system, stakeholders are faced with both opportunities and challenges of these evolving technologies. This course explores the principles of AI deployment in healthcare and the framework used to evaluate downstream effects of AI healthcare solutions.

In support of improving patient care, Stanford Medicine is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team. Visit the FAQs below for important information regarding 1) Date of the original release and expiration date; 2) Accreditation and Credit Designation statements; 3) Disclosure of financial relationships for every person in control of activity content.

Monday, 26 February 2024

Generative AI: Enhance your Data Analytics Career

 


What you'll learn

Describe how you can use Generative AI tools and techniques in the context of data analytics across industries

Implement various data analytic processes such as data preparation, analysis, visualization and storytelling using Generative AI tools

Evaluate real-world case studies showcasing the successful application of Generative AI in deriving meaningful insights 

 Analyze the ethical considerations and challenges associated with using Generative AI in data analytics

Join Free: Generative AI: Enhance your Data Analytics Career

There are 3 modules in this course

This comprehensive course unravels the potential of generative AI in data analytics. The course will provide an in-depth knowledge of the fundamental concepts, models, tools, and generative AI applications regarding the data analytics landscape. 

In this course, you will examine real-world applications and use generative AI to gain data insights using techniques such as prompts, visualization, storytelling, querying and so on. In addition, you will understand the ethical implications, considerations, and challenges of using generative AI in data analytics across different industries.

You will acquire practical experience through hands-on labs where you will leverage generative AI models and tools such as ChatGPT, ChatCSV, Mostly.AI, SQLthroughAI and more.

Finally, you will apply the concepts learned throughout the course to a data analytics project. Also, you will have an opportunity to test your knowledge with practice and graded quizzes and earn a certificate. 

This course is suitable for both practicing data analysts as well as learners aspiring to start a career in data analytics. It requires some basic knowledge of data analytics, prompt engineering, Python programming and generative artificial intelligence.

Sunday, 4 February 2024

Ultimate Step by Step Guide to ChatGPT Using Python: 90 Day Plan to Make Passive Income with Generative AI (Ultimate Step by Step Guide to Machine Learning Book 4)

 


Unlock the Future of AI!

Delve into the world of Generative AI with Daneyal Anis' groundbreaking book, "The Ultimate Step by Step Guide to ChatGPT Using Python". If you've ever been intrigued by how machine learning, data science, and artificial intelligence can be harnessed for tangible results, this guide is your key.

In today's digital age, the fields of Artificial Intelligence (AI), Machine Learning (ML), and Data Science are not just buzzwords; they are the foundational pillars that drive innovations across industries. From big tech giants to emerging startups, AI-powered solutions are the backbone of breakthroughs.

Here's what you'll discover within this comprehensive guide:

How the union of Python, the most popular language in data science, and GPT is revolutionizing the tech space.

Deep dives into the power and potential of GPT - learning its strengths, nuances, and applications.

Strategies for monetizing your AI and ML skills, unveiling the golden opportunities that await in the AI space.

Building robust AI portfolios and utilizing automation tools for efficiency and scalability.

Crafting AI profiles, including creating dynamic chatbots using ChatGPT.

Navigating the ethical considerations and responsibilities in the AI domain.

Beyond just the knowledge, this guide is crafted to action. That's why Daneyal also offers an exclusive 90-Day Plan to make passive income using Generative AI, leading you from the theoretical to practical monetization of your skills. Plus, get exclusive access to an in-depth Step by Step Course for those wanting a hands-on learning experience.

Editorial Reviews

The Digital Era is here, and AI is at its forefront. Equip yourself with the knowledge, tools, and strategies to not only participate in this revolution but also to thrive and lead. With "The Ultimate Step by Step Guide to ChatGPT Using Python", your transformative journey in the realm of AI is set on a promising path.

Hard Copy: Ultimate Step by Step Guide to ChatGPT Using Python: 90 Day Plan to Make Passive Income with Generative AI (Ultimate Step by Step Guide to Machine Learning Book 4)

Wednesday, 31 January 2024

Artificial Intelligence with Python Cookbook: Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6

 



Work through practical recipes to learn how to solve complex machine learning and deep learning problems using Python

Key Features

Get up and running with artificial intelligence in no time using hands-on problem-solving recipes

Explore popular Python libraries and tools to build AI solutions for images, text, sounds, and images

Implement NLP, reinforcement learning, deep learning, GANs, Monte-Carlo tree search, and much more

Book Description

Artificial intelligence (AI) plays an integral role in automating problem-solving. This involves predicting and classifying data and training agents to execute tasks successfully. This book will teach you how to solve complex problems with the help of independent and insightful recipes ranging from the essentials to advanced methods that have just come out of research.

Artificial Intelligence with Python Cookbook starts by showing you how to set up your Python environment and taking you through the fundamentals of data exploration. Moving ahead, you’ll be able to implement heuristic search techniques and genetic algorithms. In addition to this, you'll apply probabilistic models, constraint optimization, and reinforcement learning. As you advance through the book, you'll build deep learning models for text, images, video, and audio, and then delve into algorithmic bias, style transfer, music generation, and AI use cases in the healthcare and insurance industries. Throughout the book, you’ll learn about a variety of tools for problem-solving and gain the knowledge needed to effectively approach complex problems.

By the end of this book on AI, you will have the skills you need to write AI and machine learning algorithms, test them, and deploy them for production.

What you will learn

Implement data preprocessing steps and optimize model hyperparameters

Delve into representational learning with adversarial autoencoders

Use active learning, recommenders, knowledge embedding, and SAT solvers

Get to grips with probabilistic modeling with TensorFlow probability

Run object detection, text-to-speech conversion, and text and music generation

Apply swarm algorithms, multi-agent systems, and graph networks

Go from proof of concept to production by deploying models as microservices

Understand how to use modern AI in practice

Who this book is for

This AI machine learning book is for Python developers, data scientists, machine learning engineers, and deep learning practitioners who want to learn how to build artificial intelligence solutions with easy-to-follow recipes. You’ll also find this book useful if you’re looking for state-of-the-art solutions to perform different machine learning tasks in various use cases. Basic working knowledge of the Python programming language and machine learning concepts will help you to work with code effectively in this book.

Table of Contents

Getting Started with Artificial Intelligence in Python

Advanced Topics in Supervised Machine Learning

Patterns, Outliers, and Recommendations

Probabilistic Modeling

Heuristic Search Techniques and Logical Inference

Deep Reinforcement Learning

Advanced Image Applications

Working with Moving Images

Deep Learning in Audio and Speech

Natural Language Processing

Artificial Intelligence in Production

Hard Copy: Artificial Intelligence with Python Cookbook: Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6

Tuesday, 9 January 2024

Generative AI Essentials: Overview and Impact

 


What you'll learn

Learn how generative AI works

Explore the benefits and drawbacks of generative AI

Learn how generative AI can integrate into our daily lives

Join Free: Generative AI Essentials: Overview and Impact

There is 1 module in this course

With the rise of generative artificial intelligence, there has been a growing demand to explore how to use these powerful tools not only in our work but also in our day-to-day lives. Generative AI Essentials: Overview and Impact introduces learners to large language models and generative AI tools, like ChatGPT. In this course, you’ll explore generative AI essentials, how to ethically use artificial intelligence, its implications for authorship, and what regulations for generative AI could look like. This course brings together University of Michigan experts on communication technology, the economy, artificial intelligence, natural language processing, architecture, and law to discuss the impacts of generative AI on our current society and its implications for the future.

This course is licensed CC BY-SA 4.0 with the exclusion of the course image.

Monday, 8 January 2024

Introduction to AI in the Data Center

 


What you'll learn

What is AI and AI use cases, Machine Learning, Deep Leaning, and how training and inference happen in a Deep Learning Workflow.

The history and architecture of GPUs,  how they differ from CPUs, and how they are revolutionizing AI.    

Become familiar with deep learning frameworks, AI software stack, and considerations when deploying AI workloads on a data center on prem or cloud.

Requirements for multi-system AI clusters and considerations for infrustructure planning, including servers, networking, storage and tools. 

Join Free: Introduction to AI in the Data Center

There are 4 modules in this course

Welcome to the Introduction to AI in the Data Center Course!

As you know, Artificial Intelligence, or AI, is transforming society in many ways. 
From speech recognition to improved supply chain management, AI technology provides enterprises with the compute power, tools, and algorithms their teams need to do their life’s work. 

But how does AI work in a Data Center? What hardware and software infrastructure are needed? 
These are some of the questions that this course will help you address. 
This course will cover an introduction to concepts and terminology that will help you start the journey to AI and GPU computing in the data center. 

You will learn about:

* AI and AI use cases, Machine Learning, Deep Learning, and how training and inference happen in a Deep Learning Workflow. 
* The history and architecture of GPUs,  how they differ from CPUs, and how they are revolutionizing AI.
* Deep learning frameworks, AI software stack, and considerations when deploying AI workloads on a data center on prem, in the cloud, on a hybrid model, or on a multi-cloud environment. ​ 
* Requirements for multi-system AI clusters​​, considerations for infrastructure planning, including servers, networking, and storage and tools for cluster management, monitoring and orchestration. 

This course is part of the preparation material for the NVIDIA Certified Associate - ”AI in the Data Center” certification. 
This certification will take your expertise to the next level and support your professional development.

Who should take this course?

* IT Professionals
* System and Network Administrators
* DevOps
* Data Center Professionals

No prior experience required.
This is an introduction course to AI and GPU computing in the data center. 

To learn more about NVIDIA’s certification program, visit: 
https://academy.nvidia.com/en/nvidia-certified-associate-data-center/

So let's get started!

CertNexus Certified Artificial Intelligence Practitioner Professional Certificate

 


What you'll learn

Learn about the business problems that AI/ML can solve as well as the specific AI/ML technologies that can solve them.  

Learn important tasks that make up the workflow, including data analysis and model training and about how machine learning tasks can be automated. 

Use ML algorithms to solve the two most common supervised problems regression and classification, and a common unsupervised problem: clustering.

Explore advanced algorithms used in both machine learning and deep learning. Build multiple models to solve business problems within a workflow.

Join Free:CertNexus Certified Artificial Intelligence Practitioner Professional Certificate

Professional Certificate - 5 course series

The Certified Artificial Intelligence Practitioner™ (CAIP) specialization prepares learners to earn an industry validated certification which will differentiate themselves from other job candidates and demnstrate proficiency in the concepts of Artificial intelligence (AI) and machine learning (ML) found in CAIP. 

AI and ML have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This specialization shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users. 

The specialization is designed for data science practitioners entering the field of artificial intelligence and will prepare learners for the CAIP certification exam. 

Applied Learning Project

At the conclusion of each course, learners will have the opportunity to complete a project which can be added to their portfolio of work.  Projects include: 

Create an AI project outline

Follow a machine learning workflow to predict demand 

Build a regression, classification, or clustering model

Build a convolutional neural network (CNN)

Popular Posts

Categories

100 Python Programs for Beginner (91) AI (37) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (184) C (77) C# (12) C++ (83) Course (67) Coursera (231) Cybersecurity (24) Data Analytics (1) data management (11) Data Science (135) Data Strucures (8) Deep Learning (21) Django (14) Downloads (3) edx (2) Engineering (14) Euron (18) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Generative AI (4) Google (34) Hadoop (3) HTML Quiz (1) HTML&CSS (47) IBM (30) IoT (1) IS (25) Java (93) Java quiz (1) Leet Code (4) Machine Learning (62) Meta (22) MICHIGAN (5) microsoft (4) Nvidia (4) Pandas (4) PHP (20) Projects (29) pyth (1) Python (959) Python Coding Challenge (402) Python Quiz (56) Python Tips (3) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (4) Software (17) SQL (42) UX Research (1) web application (8) Web development (4) web scraping (2)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses