#!/usr/bin/env python
# coding: utf-8
# # 1. Using Matplotlib library
# In[1]:
import matplotlib.pyplot as plt
# Sample data
categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']
values = [10, 25, 15, 30]
# Create a bar graph
plt.bar(categories, values)
# Adding labels and title
plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Graph Example')
# Show the graph
plt.show()
#clcoding.com
# # 2. Using Seaborn library
# In[2]:
import seaborn as sns
import matplotlib.pyplot as plt
# Sample data
categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']
values = [10, 25, 15, 30]
# Create a bar plot using Seaborn
sns.barplot(x=categories, y=values)
# Adding labels and title
plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Plot Example')
# Show the plot
plt.show()
#clcoding.com
# # 3. Using Plotly library
# In[3]:
import plotly.express as px
# Sample data
categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']
values = [10, 25, 15, 30]
# Create an interactive bar graph using Plotly
fig = px.bar(x=categories, y=values, labels={'x': 'Categories', 'y': 'Values'}, title='Bar Graph Example')
# Show the plot
fig.show()
#clcoding.com
# # 4. Using Bokeh library
# In[4]:
from bokeh.plotting import figure, show
from bokeh.io import output_notebook
# Sample data
categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']
values = [10, 25, 15, 30]
# Create a bar graph using Bokeh
p = figure(x_range=categories, title='Bar Graph Example', x_axis_label='Categories', y_axis_label='Values')
p.vbar(x=categories, top=values, width=0.5)
# Show the plot in a Jupyter Notebook (or use output_file for standalone HTML)
output_notebook()
show(p)
#clcoding.com
# In[ ]: