Wednesday, 13 December 2023

Meta Database Engineer Professional Certificate

 


What you'll learn

Demonstrate proficiency of SQL syntax and explain how it’s used to interact with a database.

Create databases from scratch and learn how to add, manage and optimize your database.

Write database driven applications in Python to connect clients to MySQL databases.

Develop a working knowledge of advanced data modeling concepts.


Join Free : Meta Database Engineer Professional Certificate

Professional Certificate - 9 course series

Want to get started in the world of database engineering? This program is taught by industry-recognized experts at Meta. You’ll learn the key skills required to create, manage and manipulate databases, as well as industry-standard programming languages and software such as SQL, Python, and Django used for supporting outstanding websites and apps like Facebook, Instagram and more.


In this program, you’ll learn:

Core techniques and methods to structure and manage databases. 

Advanced techniques to write database driven applications and advanced data modeling concepts. 

MySQL database management system (DBMS) and data creation, querying and manipulation.

How to code and use Python Syntax

How to prepare for technical interviews for database engineer roles.

Any third-party trademarks and other intellectual property (including logos and icons) referenced in the learning experience remain the property of their respective owners. Unless specifically identified as such, Coursera’s use of third-party intellectual property does not indicate any relationship, sponsorship, or endorsement between Coursera and the owners of these trademarks or other intellectual property.

Applied Learning Project

You’ll complete a series of 5 projects in which you will demonstrate your proficiency in different aspects of database engineering. 

You’ll demonstrate your skills with database normalization by structuring your own relational database by defining relationships between entities and developing relational schema. 

This is followed by a stored procedure project in which you’ll demonstrate your competency in SQL automation by writing a stored procedure to solve real world problems. After developing your skills in Python, you’ll create a Python application to administer a MySQL database and program its interactions with clients. 

In the next project, you are required to apply data modeling to a real-world project by enacting advanced data modeling concepts such as automation, storage and optimization. 

Finally, you’ll be tasked with creating a MySQL database solution for an app by drawing on the knowledge and skills that they have gained throughout the program.

Tuesday, 12 December 2023

Capstone: Retrieving, Processing, and Visualizing Data with Python

 


What you'll learn

Make use of unicode characters and strings

Understand the basics of building a search engine

Select and process the data of your choice

Create email data visualizations

There are 7 modules in this course

In the capstone, students will build a series of applications to retrieve, process and visualize data using Python.   The projects will involve all the elements of the specialization.  In the first part of the capstone, students will do some visualizations to become familiar with the technologies in use and then will pursue their own project to visualize some other data that they have or can find.  Chapters 15 and 16 from the book “Python for Everybody” will serve as the backbone for the capstone. This course covers Python 3.


Join Free : Capstone: Retrieving, Processing, and Visualizing Data with Python




 

Using Python to Access Web Data

 


What you'll learn

Use regular expressions to extract data from strings

Understand the protocols web browsers use to retrieve documents and web apps

Retrieve data from websites and APIs using Python

Work with XML (eXtensible Markup Language) data


There are 6 modules in this course

This course will show how one can treat the Internet as a source of data.  We will scrape, parse, and read web data as well as access data using web APIs.  We will work with HTML, XML, and JSON data formats in Python.  This course will cover Chapters 11-13 of the textbook “Python for Everybody”. To succeed in this course, you should be familiar with the material covered in Chapters 1-10 of the textbook and the first two courses in this specialization.  These topics include variables and expressions, conditional execution (loops, branching, and try/except), functions, Python data structures (strings, lists, dictionaries, and tuples), and manipulating files.  This course covers Python 3.

Join Free : Using Python to Access Web Data




Python Data Structures by drchuck

 


What you'll learn

Explain the principles of data structures & how they are used

Create programs that are able to read and write data from files

Store data as key/value pairs using Python dictionaries

Accomplish multi-step tasks like sorting or looping using tuples


There are 7 modules in this course

This course will introduce the core data structures of the Python programming language. We will move past the basics of procedural programming and explore how we can use the Python built-in data structures such as lists, dictionaries, and tuples to perform increasingly complex data analysis. This course will cover Chapters 6-10 of the textbook “Python for Everybody”.  This course covers Python 3.


Join Free : Python Data Structures



Sunday, 10 December 2023

clcoding = '786' *coding_list, = clcoding print(coding_list)

 


Code :

clcoding = '786'

*coding_list, = clcoding

print(coding_list)

Solution and Explanation: 

In the above code, the expression *coding_list, = clcoding is used to unpack the characters from the string clcoding and assign them to the list coding_list. Here's a breakdown:

clcoding = '786'
# Unpack the characters from the string 'clcoding' and assign them to the list 'coding_list'
*coding_list, = clcoding
# Print the resulting list
print(coding_list)
When you run this code, it will output:

['7', '8', '6']
This is essentially doing the same thing as the previous example using list(clcoding), but in a more concise way using the unpacking syntax *. The result is a list containing individual characters from the string '786'.

Python Coding challenge - Day 91 | What is the output of the following Python Code?

 


The code you provided creates a list of individual characters from the string clcoding and then prints the list. Here's a breakdown:

clcoding = '786'

# Convert the string 'clcoding' into a list of individual characters

char_list = list(clcoding)

# Print the resulting list

print(char_list)

When you run this code, it will output:

['7', '8', '6']

This is because the list() function is used to convert the string '786' into a list of its individual characters.


Saturday, 9 December 2023

Python Coding challenge - Day 90 | What is the output of the following Python Code?

 


Code :

num = [10, 20, 30, 40, 50]

num[1:4] = [15, 25, 35]

print(num)


Solution and Explanation : 

The given code creates a list called num with elements [10, 20, 30, 40, 50]. Then, it uses slicing to replace elements at indices 1 to 3 (excluding 4) with the values [15, 25, 35]. Finally, it prints the modified list.

Let's break it down:

num = [10, 20, 30, 40, 50]
This creates a list with the elements 10, 20, 30, 40, and 50.

num[1:4] = [15, 25, 35]
This line uses slicing to replace the elements at indices 1 to 3 with the values 15, 25, and 35. So, the list becomes [10, 15, 25, 35, 50].

print(num)
This prints the modified list:

[10, 15, 25, 35, 50]


HarvardX: Introduction to Data Science with Python

 


About this course

Every single minute, computers across the world collect millions of gigabytes of data. What can you do to make sense of this mountain of data? How do data scientists use this data for the applications that power our modern world?

Data science is an ever-evolving field, using algorithms and scientific methods to parse complex data sets. Data scientists use a range of programming languages, such as Python and R, to harness and analyze data. This course focuses on using Python in data science. By the end of the course, you’ll have a fundamental understanding of machine learning models and basic concepts around Machine Learning (ML) and Artificial Intelligence (AI).

Using Python, learners will study regression models (Linear, Multilinear, and Polynomial) and classification models (kNN, Logistic), utilizing popular libraries such as sklearn, Pandas, matplotlib, and numPy. The course will cover key concepts of machine learning such as: picking the right complexity, preventing overfitting, regularization, assessing uncertainty, weighing trade-offs, and model evaluation. Participation in this course will build your confidence in using Python, preparing you for more advanced study in Machine Learning (ML) and Artificial Intelligence (AI), and advancement in your career.

Learners must have a minimum baseline of programming knowledge (preferably in Python) and statistics in order to be successful in this course. Python prerequisites can be met with an introductory Python course offered through CS50’s Introduction to Programming with Python, and statistics prerequisites can be met via Fat Chance or with Stat110 offered through HarvardX.


Join Free : HarvardX: Introduction to Data Science with Python

What you'll learn

Gain hands-on experience and practice using Python to solve real data science challenges
Practice Python programming and coding for modeling, statistics, and storytelling
Utilize popular libraries such as Pandas, numPy, matplotlib, and SKLearn
Run basic machine learning models using Python, evaluate how those models are performing, and apply those models to real-world problems
Build a foundation for the use of Python in machine learning and artificial intelligence, preparing you for future Python study



HarvardX: CS50's Introduction to Game Development

 


About this course

In a quest to understand how video games themselves are implemented, you'll explore the design of such childhood games as:

Super Mario Bros.

Pong

Flappy Bird

Breakout

Match 3

Legend of Zelda

Angry Birds

Pokémon

3D Helicopter Game

Dreadhalls

Portal


Join Free : HarvardX: CS50's Introduction to Game Development


What you'll learn

The basics of machine learning

How to perform cross-validation to avoid overtraining

Several popular machine learning algorithms

How to build a recommendation system

What is regularization and why it is useful?

HarvardX: CS50's Introduction to Artificial Intelligence with Python


 About this course

This course explores the concepts and algorithms at the foundation of modern artificial intelligence, diving into the ideas that give rise to technologies like game-playing engines, handwriting recognition, and machine translation. Through hands-on projects, students gain exposure to the theory behind graph search algorithms, classification, optimization, machine learning, large language models, and other topics in artificial intelligence as they incorporate them into their own Python programs. By course’s end, students emerge with experience in libraries for machine learning as well as knowledge of artificial intelligence principles that enable them to design intelligent systems of their own.

Join Free : HarvardX: CS50's Introduction to Artificial Intelligence with Python


What you'll learn


graph search algorithms
adversarial search
knowledge representation
logical inference
probability theory
Bayesian networks
Markov models
constraint satisfaction
machine learning
reinforcement learning
neural networks
natural language processing


CS50's Introduction to Computer Science

 


About this course

This is CS50x , Harvard University's introduction to the intellectual enterprises of computer science and the art of programming for majors and non-majors alike, with or without prior programming experience. An entry-level course taught by David J. Malan, CS50x teaches students how to think algorithmically and solve problems efficiently. Topics include abstraction, algorithms, data structures, encapsulation, resource management, security, software engineering, and web development. Languages include C, Python, SQL, and JavaScript plus CSS and HTML. Problem sets inspired by real-world domains of biology, cryptography, finance, forensics, and gaming. The on-campus version of CS50x , CS50, is Harvard's largest course.


Students who earn a satisfactory score on 9 problem sets (i.e., programming assignments) and a final project are eligible for a certificate. This is a self-paced course–you may take CS50x on your own schedule.


HarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.


HarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our research statement to learn more.


Harvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact harvardx@harvard.edu and/or report your experience through the edX contact form. 

Join Free : CS50's Introduction to Computer Science



Python Coding challenge - Day 89 | What is the output of the following Python Code?

 

Code : 

print(1+True)

Solution and Explanation: 

In Python, True is treated as 1 when used in numeric operations. Therefore, 1 + True is equivalent to 1 + 1, and the result is 2.

So, the output of print(1 + True) will be:

2

Match the following:

 



Answer : 

Default value of sep in print( ) - ' '

Default value of end in print( ) - \n

Easiest way to print output - Using fstring

Return type of split( ) - str

print('{num:>5}') - Right justify num in 5 columns

print('{num:<5}') - Left justify num in 5 columns

Friday, 8 December 2023

Learning Python, 5th Edition (Free PDF)

 


Get a comprehensive, in-depth introduction to the core Python language with this hands-on book. Based on author Mark Lutz’s popular training course, this updated fifth edition will help you quickly write efficient, high-quality code with Python. It’s an ideal way to begin, whether you’re new to programming or a professional developer versed in other languages.

Complete with quizzes, exercises, and helpful illustrations, this easy-to-follow, self-paced tutorial gets you started with both Python 2.7 and 3.3— the latest releases in the 3.X and 2.X lines—plus all other releases in common use today. You’ll also learn some advanced language features that recently have become more common in Python code.

  • Explore Python’s major built-in object types such as numbers, lists, and dictionaries
  • Create and process objects with Python statements, and learn Python’s general syntax model
  • Use functions to avoid code redundancy and package code for reuse
  • Organize statements, functions, and other tools into larger components with modules
  • Dive into classes: Python’s object-oriented programming tool for structuring code
  • Write large programs with Python’s exception-handling model and development tools
  • Learn advanced Python tools, including decorators, descriptors, metaclasses, and Unicode processing



Python Coding challenge - Day 88 | What is the output of the following Python Code?

 


In the given code, you have two tuples, a and b. a is a tuple containing three elements, and b is a tuple containing only one element. When you try to concatenate these tuples using the + operator, you might encounter an error.


Let's analyze the code:

a = (10, 20, 30)

b = (40)

print(a + b)

Here, the variable b is not a tuple; it's just an integer because a single-element tuple should have a comma after the element. To create a single-element tuple, you should write it as follows:

b = (40,)

Now, if you want to concatenate the two tuples, you can use the + operator:


a = (10, 20, 30)

b = (40,)

print(a + b)

The output will be:

(10, 20, 30, 40)

This code creates a new tuple by concatenating the elements of a and b.

Wednesday, 6 December 2023

Python Coding challenge - Day 87 | What is the output of the following Python Code?

 


Solution and Explanation: 

In Python, the is keyword is used to check if two variables refer to the same object in memory, while the == operator is used to check if the values of the two variables are equal.


In your example:

a = "Hello"

b = "Hello"

print(f"a is b: {a is b}")

print(f"a == b: {a == b}")

The output will be:

a is b: True

a == b: True

This is because string literals (like "Hello") are interned in Python, meaning that the interpreter will reuse the same object in memory for equal string literals. So, both a and b refer to the same string object in memory, and hence a is b is True. The == comparison also evaluates to True because the values of a and b are the same.

what is the output of following Python code? 🧵:

 a = (1, 2, 3)  # tuple

b = (1, 2, 3)

print(f"a is b: {a is b}")  # True


a = {1, 2, 3}  # set

b = {1, 2, 3}

print(f"a is b: {a is b}")  # False


a = 1 + 2j  # complex number

b = 1 + 2j

print(f"a is b: {a is b}")  # True


Let's break down each part of the code:

a = (1, 2, 3)  # tuple

b = (1, 2, 3)

print(f"a is b: {a is b}")  # True

Here, you are creating two tuples a and b with the same values (1, 2, 3). Tuples are immutable in Python, and for small immutable objects like tuples, Python often optimizes and reuses the same object in memory. Therefore, a is b is True because both variables reference the same tuple object.

a = {1, 2, 3}  # set

b = {1, 2, 3}

print(f"a is b: {a is b}")  # False

In this part, you are creating two sets a and b with the same values {1, 2, 3}. Unlike tuples, sets are mutable in Python. The optimization for reusing the same object in memory doesn't typically happen with mutable objects. Therefore, a is b is False because each set is a distinct object in memory.

a = 1 + 2j  # complex number

b = 1 + 2j

print(f"a is b: {a is b}")  # True

In the last part, you are creating two complex numbers a and b with the same values 1 + 2j. Similar to tuples, complex numbers are immutable, so Python optimizes and reuses the same object in memory. Therefore, a is b is True because both variables reference the same complex number object.

In summary, the behavior of is and == depends on the type of objects being compared and whether they are mutable or immutable. For immutable objects, like tuples and complex numbers in your examples, is may evaluate to True because Python may reuse the same object in memory for efficiency. However, for mutable objects, like sets, is is more likely to evaluate to False because each object is distinct in memory. It's generally safer to use == for equality comparisons unless you specifically want to check object identity.

a = 10 b = 10 print(f"a is b: {a is b}") print(f"a == b: {a == b}")

 



Code :

a = 10

b = 10

print(f"a is b: {a is b}")  

print(f"a == b: {a == b}")


Answer :

a is b: True
a == b: True

Solution and Explanation:

the code line by line:

a = 10

Here, you are assigning the value 10 to the variable a. This means that the variable a now refers to the integer object 10.

b = 10

Similarly, you are assigning the value 10 to the variable b. Like before, the variable b now refers to the same integer object 10. In Python, for small integers, the interpreter often optimizes and reuses the same object in memory.

print(f"a is b: {a is b}")

This line prints the result of the identity comparison using the is operator. It checks if the variables a and b refer to the exact same object in memory. Since integers are often optimized for small values, a is b will usually be True because both variables reference the same 10 object in memory.

print(f"a == b: {a == b}")

This line prints the result of the equality comparison using the == operator. It checks if the values of a and b are equal. Since both a and b have the value 10, a == b will be True.

In summary, the code demonstrates the difference between the is operator, which checks identity (whether two variables reference the exact same object), and the == operator, which checks equality (whether the values of two variables are the same). In this specific case with small integers, both comparisons evaluate to True.

Calculate derivatives in Python

 


#!/usr/bin/env python

# coding: utf-8


# # Calculate derivatives in Python


# In[9]:

import sympy as sym

# In[11]:

x = sym.Symbol('x') # Symbolize X

func= x**4+4*x**2+5*x-6    # Function

sym.Derivative(func, x) # Derivative expression

# In[12]:

sym.Derivative(func, x, evaluate=True) # Calculate derivative of func

# In[13]:

func.diff(x)    # Or use this for the same

# In[14]:

# Create functions with lambdify

expr= sym.lambdify(x, func) 

expr_der=sym.lambdify(x, func.diff(x))

# In[15]:

print(f'value of func at x=5: {expr(5)}')

print(f'derivative of func at x=5: {expr_der(5)}')

Bar Graph plot using different Python Libraries

 







#!/usr/bin/env python

# coding: utf-8


# # 1. Using Matplotlib library 


# In[1]:



import matplotlib.pyplot as plt


# Sample data

categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']

values = [10, 25, 15, 30]


# Create a bar graph

plt.bar(categories, values)


# Adding labels and title

plt.xlabel('Categories')

plt.ylabel('Values')

plt.title('Bar Graph Example')


# Show the graph

plt.show()


#clcoding.com



# # 2. Using Seaborn library


# In[2]:



import seaborn as sns

import matplotlib.pyplot as plt


# Sample data

categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']

values = [10, 25, 15, 30]


# Create a bar plot using Seaborn

sns.barplot(x=categories, y=values)


# Adding labels and title

plt.xlabel('Categories')

plt.ylabel('Values')

plt.title('Bar Plot Example')


# Show the plot

plt.show()

#clcoding.com



# # 3. Using Plotly library


# In[3]:



import plotly.express as px


# Sample data

categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']

values = [10, 25, 15, 30]


# Create an interactive bar graph using Plotly

fig = px.bar(x=categories, y=values, labels={'x': 'Categories', 'y': 'Values'}, title='Bar Graph Example')


# Show the plot

fig.show()

#clcoding.com



# # 4. Using Bokeh library


# In[4]:



from bokeh.plotting import figure, show

from bokeh.io import output_notebook


# Sample data

categories = ['Category 1', 'Category 2', 'Category 3', 'Category 4']

values = [10, 25, 15, 30]


# Create a bar graph using Bokeh

p = figure(x_range=categories, title='Bar Graph Example', x_axis_label='Categories', y_axis_label='Values')

p.vbar(x=categories, top=values, width=0.5)


# Show the plot in a Jupyter Notebook (or use output_file for standalone HTML)

output_notebook()

show(p)

#clcoding.com



# In[ ]:






Tuesday, 5 December 2023

Python Coding challenge - Day 86 | What is the output of the following Python Code?

 

Code : 

s = set([1, 0, 2, 0, 3])
s.remove(0)
print(s)

Solution and Explanation: 

The remove() method in a set in Python removes the specified element. In your code:

s = set([1, 0, 2, 0, 3])

s.remove(0)

print(s)

It removes the element 0 from the set s. The output will be a set without the removed element:

{1, 2, 3}

g = [1, 0, 2, 0, 3] g.remove(0) print(g)

 What is the output of following Python Code?

g = [1, 0, 2, 0, 3]

g.remove(0)

print(g)

A) [1, 0, 2, 3]

B) [1, 2, 3]

C) [1, 2, 0, 3]

D) [0, 2, 0, 3]


Solution and Explanation: 

The remove() method in Python removes the first occurrence of a specified value from a list. In the code you provided:

g = [1, 0, 2, 0, 3]

g.remove(0)

print(g)

The element 0 is removed from the list g, and the updated list is then printed. Therefore, the output will be:

[1, 2, 0, 3]

Monday, 4 December 2023

Python Coding challenge - Day 85 | What is the output of the following Python Code?

 





Let's break down the code:

my_list = [60, 70, 80, 90, 100]

result = my_list[4::-1]

print(result)

In this code, my_list is a list containing the elements [60, 70, 80, 90, 100]. The expression my_list[4::-1] is a slicing operation with the following parameters:


4 is the starting index, and it starts from the last element (index 4).

:: indicates the slicing with a step of -1, which means it goes backward.

So, my_list[4::-1] will start from index 4 and go backward with a step of 1, including the element at index 4 itself. Therefore, it will select elements in reverse order.


The result will be a new list containing the elements [100, 90, 80, 70, 60]. When you print the result, you'll get:

[100, 90, 80, 70, 60]

result = min(0.0, -0.0) print(result)

 


Code :

result = min(0.0, -0.0)  

print(result)


Solution and Explanation :

Let's break down the provided code:

result = min(0.0, -0.0)
print(result)

min(0.0, -0.0): The min() function is used to determine the minimum value among the given arguments. In this case, the arguments are 0.0 and -0.0. Although mathematically, 0.0 and -0.0 are considered equal, in Python, they are treated as identical values. Therefore, the min() function will simply return the first occurrence, which is 0.0.

result = min(0.0, -0.0): The result of the min() function is assigned to the variable result.

print(result): This line prints the value stored in the variable result to the console. In this case, it will print 0.0.

So, when you run this code, the output will be:

0.0

Despite the fact that -0.0 is conceptually different in terms of sign, Python treats it as equal to 0.0 for most practical purposes, including comparisons and the min() function.

Python Coding challenge - Day 84 | What is the output of the following Python Code?

 



Code :

my_list = [1, 2, 3, 4, 5] 

result = my_list[1:4:2] 

print(result)

Solution and Explanation : 

Let's break down the code:

my_list = [1, 2, 3, 4, 5]
Here, you have defined a list named my_list containing the elements 1, 2, 3, 4, and 5.

result = my_list[1:4:2]
This line uses slicing to create a new list named result from my_list. The slicing syntax is start:stop:step. In this case:

start is 1
stop is 4 (exclusive, so it includes elements at indices 1 and 2)
step is 2
So, it starts at index 1, includes elements at indices 1 and 3 (skipping every other element because of the step), and stops before index 4.

Therefore, the result will be [2, 4].

print(result)
This line prints the value of result, which is [2, 4].

Coding in Python: A Comprehensive Beginners Guide to Learn the Realms of Coding in Python (Free PDF)

 


Python Coding is not a book you can read while relaxing on the couch. This book is for those that are ready to start working right away to write your own codes. I do not recommend this book if you are the type of person who reads a book once and never opens it again because you think you have mastered the book's technical contents. Tech books are different from novels and other non-fiction books. They demand more than merely one reading. Buy this book if you have made up your mind to read it and practice it again and again.


This book will compel you to step into the practical world. What makes this book different from the other books is its specific features and contents. Let's take a look at both.


Features of the book:

  • Practicality
  • Easy-to-digest
  • Clarity of concepts
  • Simplicity of communication
  • Clear examples

You'll discover...

  • Python installation process
  • Python data types
  • Python lists
  • Python tuples
  • Python if, if-else, if-elif statements
  • Python dictionaries and dictionary constructors
  • Python functions
  • Python for and while loops
  • Python input function
  • Python classes, child classes, import functions
  • And more!

If you're interested in the practical application of learning to code with Python, then this book is for you.


PDF Download :

Sunday, 3 December 2023

Machine Learning Applications Using Python: Cases Studies from Healthcare, Retail, and Finance (Free PDF)

 


Gain practical skills in machine learning for finance, healthcare, and retail. This book uses a hands-on approach by providing case studies from each of these domains: you’ll see examples that demonstrate how to use machine learning as a tool for business enhancement. As a domain expert, you will not only discover how machine learning is used in finance, healthcare, and retail, but also work through practical case studies where machine learning has been implemented. 

Machine Learning Applications Using Python is divided into three sections, one for each of the domains (healthcare, finance, and retail). Each section starts with an overview of machine learning and key technological advancements in that domain. You’ll then learn more by using case studies on how organizations are changing the game in their chosen markets. This book has practical case studies with Python code and domain-specific innovative ideas for monetizing machine learning. 


What You Will Learn

Discover applied machine learning processes and principles

Implement machine learning in areas of healthcare, finance, and retail

Avoid the pitfalls of implementing applied machine learning

Build Python machine learning examples in the three subject areas


Who This Book Is For

Data scientists and machine learning professionals.  

Buy : Machine Learning Applications Using Python: Cases Studies from Healthcare, Retail, and Finance


Free PDF :


MichiganX: Python Data Structures (Free Course)

 



About this course

This course will introduce the core data structures of the Python programming language. We will move past the basics of procedural programming and explore how we can use the Python built-in data structures such as lists, dictionaries, and tuples to perform increasingly complex data analysis. This course will cover Chapters 6-10 of the textbook "Python for Everybody". This course covers Python 3.

What you'll learn

How to open a file and read data from a file

How to create a list in Python

How to create a dictionary

Sorting data

How to use the tuple structure in Python


Join Free : MichiganX: Python Data Structures




Data Structures and Algorithms in Python

 


Data structures and algorithms are among the most fundamental concepts of Computer Science. Whether it’s real-world problems you’re trying to solve or the typical coding question asked in an interview, almost every problem requires you to demonstrate a deep understanding of data structures and algorithms.


This course is a detailed review of some of the most common data structures and algorithms that you’ll see in interviews and your everyday work. With implementation details, thorough explanations, and hands-on coding exercises, you’ll quickly gain the confidence you need to solve any problem, no matter the situation.


Syllabus: 

  1. Introduction
  2. Insertion
  3. Deletion by Value
  4. Deletion by Position
  5. Length
  6. Node Swap
  7. Reverse
  8. Merge Two Sorted Linked Lists
  9. Remove Duplicates
  10. Nth-to-Last Node
  11. Count Occurrences
  12. Rotate
  13. Is Palindrome
  14. Exercise: Move Tail to Head
  15. Solution Review: Move Tail to Head
  16. Exercise: Sum Two Linked Lists
  17. Solution Review: Sum Two Linked Lists
  18. Quiz

Join Free : Data Structures and Algorithms in Python

What is the output of following Python code?

 What is the output of following Python code?


my_string = "Python"

result = my_string + my_string[2::2]

print(result)


Solution and Explanation: 

Let's break down the code:

my_string = "Python"
result = my_string + my_string[2::2]
print(result)

my_string is assigned the value "Python".
my_string[2::2] extracts a substring starting from index 2 (inclusive) with a step of 2. So, it takes every second character starting from the third character. In this case, it extracts the characters "to", resulting in the substring "to".
my_string + my_string[2::2] concatenates the original string "Python" with the extracted substring "to".
The final result is then printed.
The output of the code will be:

Pythonto

So, the value of result is "Pythonto".

print(False+False) ?

 Code : 

print(False+False) 

Solution and Explanation : 

In Python, False is internally represented as the integer value 0. Therefore, when you use the + operator to add two False values, it's equivalent to adding 0 + 0, which results in 0.

Here's the code and its output:

print(False + False)

Output:

0

So, False + False evaluates to 0 in Python.


Saturday, 2 December 2023

print(True+True)

 Code :

print(True+True)


Solution and Explanation : 

In Python, True is internally represented as the integer value 1. Therefore, when you use the + operator to add two True values, it's equivalent to adding 1 + 1, which results in 2.


Here's the code and its output:

print(True + True)

Output:

2

Python Coding challenge - Day 83 | What is the output of the following Python Code?

 


Code : 

list1 = [1, 2, 4, 3]
list2 = [1, 2, 3, 4]
print(list1 != list2)


Solution and Explanation: 

The != operator in Python checks for inequality. In the given code, list1 and list2 are two lists with the same elements but in different orders. When you compare them using !=, the result is True because the order of elements matters in list comparison.


Here's a breakdown of the code:


list1 = [1, 2, 4, 3]

list2 = [1, 2, 3, 4]

print(list1 != list2)

list1 contains elements [1, 2, 4, 3].

list2 contains elements [1, 2, 3, 4].

When comparing list1 and list2 using !=, it checks if the two lists are not equal.

The order of elements is different, so the result of the comparison is True.

The print statement outputs True.

If the order of elements in both lists were the same, the result would be False.

Python Data Structures and Algorithms (Free PDF)


 

A knowledge of data structures and the algorithms that bring them to life is the key to

building successful data applications. With this knowledge, we have a powerful way to

unlock the secrets buried in large amounts of data. This skill is becoming more important in

a data-saturated world, where the amount of data being produced dwarfs our ability to

analyze it. In this book, you will learn the essential Python data structures and the most

common algorithms. This book will provide basic knowledge of Python and an insight into

the exciting world of data algorithms. We will look at algorithms that provide solutions to

the most common problems in data analysis, including sorting and searching data, as well

as being able to extract important statistics from data. With this easy-to-read book, you will

learn how to create complex data structures such as linked lists, stacks, and queues, as well

as sorting algorithms such as bubble sort and insertion sort. You will learn the common

techniques and structures used in tasks such as preprocessing, modeling, and transforming

data. We will also discuss how to organize your code in a manageable, consistent, and

extendable way. You will learn how to build components that are easy to understand,

debug, and use in different applications.

A good understanding of data structures and algorithms cannot be overemphasized. It is an

important arsenal to have in being able to understand new problems and find elegant

solutions to them. By gaining a deeper understanding of algorithms and data structures,

you may find uses for them in many more ways than originally intended. You will develop

a consideration for the code you write and how it affects the amount of memory and

CPU cycles to say the least. Code will not be written for the sake of it, but rather with a

mindset to do more using minimal resources. When programs that have been thoroughly

analyzed and scrutinized are used in a real-life setting, the performance is a delight to

experience. Sloppy code is always a recipe for poor performance. Whether you like

algorithms purely from the standpoint of them being an intellectual exercise or them

serving as a source of inspiration in solving a problem, it is an engagement worthy of

pursuit.

The Python language has further opened the door for many professionals and students to

come to appreciate programming. The language is fun to work with and concise in its

description of problems. We leverage the language's mass appeal to examine a number of

widely studied and standardized data structures and algorithms.

The book begins with a concise tour of the Python programming language. As such, it is not

required that you know Python before picking up this book.

Download PDF : Python Data Structures and Algorithms

Buy : Hands-On Data Structures and Algorithms with Python: Store, manipulate, and access data effectively and boost the performance of your applications, 3rd Edition


Python Coding challenge - Day 82 | What is the output of the following Python Code?

 


Code : 

tuple1 = (1, 2, 4, 3) 

tuple2 = (1, 2, 3, 4) 

print(tuple1 < tuple2) 


Solution and Explanation : 

The above code is comparing two tuples, tuple1 and tuple2, using the less than (<) operator. This comparison is done element-wise.

In this case, the first elements of both tuples are the same (1), so it moves on to the second elements. The second elements are also the same (2). It continues this process until it finds a pair of elements where one is less than the corresponding element in the other tuple.

In your example:

tuple1: (1, 2, 4, 3)
tuple2: (1, 2, 3, 4)

At the third position, tuple1 has 4, and tuple2 has 3. Since 3 is less than 4, the result of the comparison is False.

So, when you run this code, it will print:

False

Python Code for Periodic Table Elements

 




Code :

import periodictable

# Get details of an element by atomic number
Atomic_No = int(input("Enter Element Atomic No :"))
element = periodictable.elements[Atomic_No] 
print('Atomic number:', element.number)
print('Symbol:', element.symbol)
print('Name:', element.name)
print('Atomic mass:', element.mass)
print('Density:', element.density)
#clcoding.com


Output : 

Enter Element Atomic No :26
Atomic number: 26
Symbol: Fe
Name: iron
Atomic mass: 55.845
Density: 7.874

Friday, 1 December 2023

Create Your First Web App with Python and Flask

 


What you'll learn

Create Web Applications with Flask

Use WTForms and SQLAlchemy in Flask Applications

Use Templates in Flask Applications

About this Guided Project

In this 2-hour long project-based course, you will learn the basics of web application development with Python using the Flask framework. Through hands on, practical experience, you will go through concepts like creating a Flask Application, using Templates in Flask Applications, using SQLAlchemy and SQLite with Flask, and using Flask and WTForms. You will then apply the concepts to create your first web application with Python and Flask.

This course is aimed at learners who are looking to get started with web application development using Python, and have some prior programming experience in the Python programming language. The ideal learner has understanding of Python syntax, HTML syntax, and computer programming concepts.

Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.


Join Free : Create Your First Web App with Python and Flask



Real-time Currency Converter with Python

 


pip install forex_python

Code : 

from forex_python.converter import CurrencyRates
c = CurrencyRates()
amount = int(input("Enter the amount: "))
from_currency = input("From Currency: ").upper()
to_currency = input("To Currency: ").upper()

print(from_currency, " To ", to_currency, amount)
result = c.convert(from_currency, to_currency, amount)
print(result)

#clcoding.com

Output : 

Enter the amount: 10
From Currency: EUR
To Currency: INR
EUR  To  INR 10
888.9

What is the result of the following python code?

 What is the result of the following python code?


x = {1: "a", 2: "b"}

y = x.keys()

print(y)

Solution and Explanation:

The code you provided creates a dictionary x with keys 1 and 2, and then assigns the keys of the dictionary to the variable y. Finally, it prints the values of y. However, in Python 3, y will be a view object (dict_keys) representing the keys of the dictionary. To see the keys as a list, you can convert it to a list:

x = {1: "a", 2: "b"}

y = list(x.keys())

print(y)

Output: [1, 2]


 Let's break down the code step by step:

Dictionary Creation:

x = {1: "a", 2: "b"}

Here, a dictionary x is created with keys 1 and 2, each associated with a corresponding value ("a" and "b").

Getting Keys:

y = x.keys()

In this line, the keys() method is used on the dictionary x to obtain a view object that represents the keys of the dictionary. The dict_keys view is a dynamic view of the dictionary's keys.

Printing:

print(y)

This line prints the result of y, which is the dict_keys view. However, in Python 3, this view is not automatically converted to a list when printed.

If you want to see the keys as a list, you can convert the dict_keys view to a list, like this:

y = list(x.keys())

print(y)

Output:

[1, 2]

The final output, after converting the dict_keys view to a list, is a list containing the keys of the dictionary x. In this case, it's [1, 2].


a = [] b = [a.append(i) for i in range(5)] print(a) print(b)

Code : 

a = []

b = [a.append(i) for i in range(5)]

print(a)

print(b)


Solution and Explanation: 

This code outputs the following:

[0, 1, 2, 3, 4]
[None, None, None, None, None]
List a is modified by the loop, and the loop overwrites the list b with None.

here is the explanation of the code:

The list comprehension [a.append(i) for i in range(5)] creates a list of None values. This is because the expression a.append(i) returns None, and the list comprehension only stores the return values of the expressions it contains.

The loop overwrites the list b with None because the list comprehension is evaluated before the loop. This means that the list b is already a list of None values by the time the loop starts.

The list a is modified by the loop because the expression a.append(i) appends the value i to the list a. This is because the expression a.append(i) is evaluated inside the loop, and the list a is modified in place.

Therefore, the output of the code is:

a: [0, 1, 2, 3, 4]
b: [None, None, None, None, None]

Python Coding challenge - Day 81 | What is the output of the following Python Code?

 


Code :

i=j=[3]
i+=j
print(i,j)

Solution and Explanation:


In this Python code:

i = j = [3]

i += j

print(i, j)

Both i and j are assigned the same list [3]. The += operator is used to extend the list i by appending the elements of list j to it.


After the execution of the code, the output will be:

[3, 3] [3, 3]

Here's the breakdown:


i = j = [3]: Both i and j are assigned the list [3].

i += j: The += operator modifies the list i by appending the elements of list j to it. So, i becomes [3, 3].

print(i, j): Prints the values of i and j.

As a result, both i and j are [3, 3].







What is the output of the following python code?

 What is the output of the following python code?

x = 5

y = x > 3

print(y)


a) 5

b) 3

c) True

d) False


Solution and Explanation: 

The output of the given Python code will be:

True

Explanation:

x = 5: Assigns the value 5 to the variable x.
y = x > 3: Compares whether the value of x is greater than 3 and assigns the result (True or False) to the variable y.
print(y): Prints the value of y.
In this case, x is indeed greater than 3 (as x is 5), so the comparison x > 3 evaluates to True. Therefore, the output of the code is True. So, the correct option is:

c) True

a = "240" print(a.zfill(4))

 Code :

a = "240"

print(a.zfill(4))


Solution and Explanation : 

The zfill() method in Python is used to pad a string with zeros (0) on the left side until the string reaches the specified width. In your case, you've specified a width of 4.


Here's how it works:

a = "240"

result = a.zfill(4)

print(result)

Output:

0240

In this example, the original string "240" has a length of 3. The zfill(4) method pads zeros on the left side to make the length of the string 4. Therefore, the result is "0240".

my_list=[11,22,33,44,55] del my_list[:] print(my_list)

 Code :

my_list=[11,22,33,44,55]

del my_list[:]

print(my_list)


Solution and Explanation:

The above code  deletes all elements from the list my_list using the del statement with the slice [:]. This is a common way to clear a list in Python.

Here's a breakdown of the code:

del my_list[:]: This deletes all elements in the list. The [:] is a slice that includes all elements of the list.

After executing this code, the list my_list will be empty. If you print my_list after the deletion, you will get:

[]

So, the output of the provided code will be an empty list ([]).

a = (10, '20', 30) print(min(a))

Code : 

a = (10, '20', 30)

print(min(a))

Solution and Explanation: 

The min() function compares the elements in the tuple lexicographically (in the case of strings) or numerically (in the case of numbers) and returns the smallest element. If the elements are of different types, it may raise a TypeError.


In your case, the tuple a contains elements of different types: an integer (10), a string ('20'), and another integer (30). The min() function will compare them based on their natural order. In this case, it will compare the integer 10, the string '20', and the integer 30.

The comparison is done lexicographically for strings, so '20' is considered smaller than both 10 and 30. Therefore, the output of the min(a) expression will be '20'.

If you run the provided code, the output will be:

20

Thursday, 30 November 2023

Python Basics: Automation and Bots

 


What you'll learn

Learn how to play faster and looser and more casual with code, skimming and copying code from the Internet.

Discuss code flow and the order that your computer reads the code you write. This introduces us to a whole other level of thinking in code.

Logic can be harnessed to do useful stuff. We'll make it concrete by performing tasks like building an anagram finder.

Apply Python by robocall and spam text yourself through the Twilio API.

There are 4 modules in this course

Understanding the flow of running code is a major part of learning to think in code and of coding itself. In this course we will study the flow of code through several demonstrations and walkthroughs. We'll experience turning logic into useful work by running Python that automatically reads all of Shakespeare, and by setting Python up to give you a call on the phone. In technical terms, this course will demonstrate Python loops, list comprehensions, and conditional statements, while at a higher level we'll discuss code style and good practices for code.


Join Free : Python Basics: Automation and Bots


Creative Thinking: Techniques and Tools for Success (Free Course)

 


What you'll learn

Understand what creative thinking techniques are

Comprehend their importance in tackling global challenges as well as in everyday problem-solving scenarios

Select and apply the appropriate technique based on the opportunity to seize or the problem to tackle


There are 7 modules in this course

In today’s ever-growing and changing world, being able to think creatively and innovatively are essential skills. It can sometimes be challenging to step back and reflect in an environment which is fast paced or when you are required to assimilate large amounts of information. Making sense of or communicating new ideas in an innovative and engaging way, approaching problems from fresh angles, and producing novel solutions are all traits which are highly sought after by employers.


This course will equip you with a ‘tool-box’, introducing you to a selection of behaviours and techniques that will augment your innate creativity. Some of the tools are suited to use on your own and others work well for a group, enabling you to leverage the power of several minds.  You can pick and choose which of these tools or techniques suit your needs and interests, focusing on some or all of the selected approaches and in the order that fits best for you.


The practical approach of this course enables you to acquire an essential skill-set for generating ideas, with plenty of:

- Fun e-tivities and exercises;

- Practical lectures and tips;

- Video representations of the techniques in action.


By the end of this course you should be able to:

- Pick a type of brainstorming you think will be useful to apply to a challenge

- Use alphabet brainstorming in tackling a challenge

- Use grid brainstorming in tackling a challenge

- Use a morphological chart to synthesise a solution to a challenge

- Use the TRIZ contradiction matrix to identify recommended inventive principles

- Apply SCAMPER to a range of challenges


The greatest innovators aren’t necessarily the people who have the most original idea. Often, they are people- or teams- that have harnessed their creativity to develop a new perspective or more effective way of communicating an idea. You can train your imagination to seize opportunities, break away from routine and habit, and tap into your natural creativity.


Join this course and a community of practitioners in CREATIVITY!

Join Free - Creative Thinking: Techniques and Tools for Success




What is wrong with “is” in Python ?

 


In Python, the is keyword is used to test object identity, which checks if two variables reference the same object in memory. However, it's important to note that the behavior you're observing is specific to the implementation of Python and may vary based on different factors, such as the Python interpreter and optimizations.

In CPython (the reference implementation of Python), small integers are cached for performance reasons. This means that integers in a certain range are the same object in memory to optimize memory usage and speed up operations. In your first example:

a = 256
b = 256
print(a is b)  # True
This is True because a and b both reference the same object in memory due to the integer caching optimization.

In second example:

a = 257
b = 257
print(a is b)  # False
This is False because the integers 257 and 257 are not cached, so they are distinct objects in memory.

While using is for comparing integers might work in some cases, it's generally recommended to use the == operator for equality testing. The == operator compares the values of the objects, which is more reliable and is the standard way to check if two variables hold the same value:

print(a == b)  # True for both examples
So, in summary, while a is b may work for small integers due to caching, it's not guaranteed and is not considered a good practice for equality testing. Always use == when comparing values.

Wednesday, 29 November 2023

c = True or False print(not not c)

 c = True or False

print(not not c)

In the first line, True or False evaluates to True because it uses the logical OR operator (or). This means that the variable c is assigned the value True.


In the second line, not not c is equivalent to not (not c). The not operator negates the value, so not c is not True, which is False. Then, the outer not negates this result again, making it not False, which evaluates to True.

So, the final output of the code will be:

True

This is because c is assigned the value True, and the double not operation results in True.






State whether the following statements are True or False (Classes and Objects)


a. Class attributes and object attributes are same.

Answer

False

b. A class data member is useful when all objects of the same class must

share a common item of information.

Answer

True

c. If a class has a data member and three objects are created from this class,

then each object would have its own data member.

Answer

True

d. A class can have class data as well as class methods.

Answer

True

e. Usually data in a class is kept private and the data is accessed /

manipulated through object methods of the class.

Answer

True

f. Member functions of an object have to be called explicitly, whereas, the

_init_( ) method gets called automatically.

Answer

True

g. A constructor gets called whenever an object gets instantiated.

Answer

True

h. The _init_( ) method never returns a value.

Answer

True

i. When an object goes out of scope, its _del_( ) method gets called

automatically.

Answer

True

j. The self variable always contains the address of the object using which

the method/data is being accessed.

Answer

True

k. The self variable can be used even outside the class.

Answer

False

l. The _init_( ) method gets called only once during the lifetime of an

object.

Answer

True

m. By default, instance data and methods in a class are public.

Answer

True

n. In a class 2 constructors can coexist-a 0-argument constructor and a 2-

argument constructor.

Answer

True

Popular Posts

Categories

100 Python Programs for Beginner (53) AI (34) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (173) C (77) C# (12) C++ (82) Course (67) Coursera (226) Cybersecurity (24) data management (11) Data Science (128) Data Strucures (8) Deep Learning (20) Django (14) Downloads (3) edx (2) Engineering (14) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Google (34) Hadoop (3) HTML&CSS (47) IBM (25) IoT (1) IS (25) Java (93) Leet Code (4) Machine Learning (59) Meta (22) MICHIGAN (5) microsoft (4) Nvidia (3) Pandas (4) PHP (20) Projects (29) Python (932) Python Coding Challenge (358) Python Quiz (23) Python Tips (2) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (3) Software (17) SQL (42) UX Research (1) web application (8) Web development (2) web scraping (2)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses