Wednesday, 28 August 2024

Flask for Beginners: Creating an Application

 


Getting Started with Flask: Creating Your First Web Application

Introduction

Flask is a lightweight and versatile Python web framework that's perfect for beginners looking to develop their first web application. It's easy to set up, requires minimal coding, and offers the flexibility to build everything from simple web pages to complex, data-driven applications. Recently, I took a Coursera project titled "Flask for Beginners: Creating an Application," which provided a hands-on introduction to Flask and helped me build a basic web application step-by-step. Here, I’ll share my learning experience and provide an overview of what to expect from the course.

What is Flask?

Flask is a micro web framework for Python, designed to be lightweight, easy to use, and flexible. It allows developers to quickly set up a web server, handle HTTP requests, and render dynamic content. Unlike larger frameworks like Django, Flask does not come with many built-in tools or components, giving developers more freedom to choose the best tools and libraries for their specific needs.

Why Choose Flask?

Flask is an excellent choice for beginners for several reasons:

  1. Simplicity and Minimalism: Flask's core philosophy is "less is more," providing a simple foundation with which you can build your application.
  2. Flexibility: It doesn't force you into a specific project structure, allowing you to choose the tools and technologies that best suit your needs.
  3. Extensive Documentation: Flask has comprehensive documentation and a large community, making it easier for beginners to find resources and support.

My Experience with the Coursera Project

The Coursera project "Flask for Beginners: Creating an Application" is designed as a hands-on, interactive learning experience. It provides a step-by-step guide to building a simple web application using Flask. Here's a quick overview of the key stages of the project:

  1. Setting Up the Environment: The course starts by helping you set up your development environment with Python and Flask. You'll learn how to install Flask using pip and create a virtual environment to manage dependencies.

  2. Creating a Basic Flask Application: You'll write your first Flask application by creating a simple "Hello, World!" web page. This involves understanding Flask's routing mechanism, which maps URLs to functions in your code.

  3. Building Dynamic Content: The course then moves on to creating dynamic content with HTML templates and Jinja2, Flask's templating engine. You'll learn how to pass variables from your Python code to your HTML templates, making your web pages more interactive.

  4. Handling User Input: One of the most critical parts of any web application is handling user input. The course covers how to create forms and handle data submissions securely, using Flask's built-in form-handling capabilities.

  5. Deploying Your Application: Finally, you'll learn how to deploy your Flask application to the web so that it's accessible to anyone online. The course discusses various hosting options and provides a basic overview of deployment tools like Heroku.

Key Takeaways

  1. Understanding the Basics of Flask: The project gave me a solid foundation in Flask, from setting up a development environment to creating dynamic web pages.
  2. Building a Simple Web Application: By the end of the course, I had built a simple yet functional web application, reinforcing my understanding of web development fundamentals.
  3. Practical Experience with Deployment: Learning how to deploy a web application was an invaluable experience, giving me insights into real-world considerations when launching an app.
  4. Boosting Confidence: As someone new to Flask, this project boosted my confidence in working with Python web frameworks and opened the door to more advanced web development projects.

Tips for Beginners

  • Start Small: Begin with a simple project to get familiar with Flask's core concepts.
  • Read the Documentation: Flask's official documentation is an excellent resource. Take the time to read through it and understand the framework's capabilities.
  • Experiment and Explore: Don’t be afraid to experiment with different features and libraries. Flask is highly extensible, and there are many tools you can integrate to enhance your application.
  • Practice Deployment: Getting your application online can be one of the most rewarding parts of web development. Try deploying your project to a free platform like Heroku to gain practical experience.

Conclusion

The "Flask for Beginners: Creating an Application" project on Coursera is an excellent starting point for anyone interested in learning Flask and web development with Python. It offers a hands-on approach, allowing you to build a real web application while learning the essentials of web frameworks. If you are looking to expand your web development skills or just curious about Flask, I highly recommend giving this course a try.

Whether you're building a simple website or a complex web application, Flask is a powerful tool in the Python ecosystem that is worth exploring. Happy coding!


By taking this course, I gained a solid foundation in Flask and the confidence to dive deeper into web development. 

Join Free: Flask for Beginners: Creating an Application

Create Your First Web App with Python and Flask

 


What you'll learn

Create Web Applications with Flask

Use WTForms and SQLAlchemy in Flask Applications

Use Templates in Flask Applications

Join Free: Create Your First Web App with Python and Flask

About this Guided Project

In this 2-hour long project-based course, you will learn the basics of web application development with Python using the Flask framework. Through hands on, practical experience, you will go through concepts like creating a Flask Application, using Templates in Flask Applications, using SQLAlchemy and SQLite with Flask, and using Flask and WTForms. You will then apply the concepts to create your first web application with Python and Flask.

This course is aimed at learners who are looking to get started with web application development using Python, and have some prior programming experience in the Python programming language. The ideal learner has understanding of Python syntax, HTML syntax, and computer programming concepts.

Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Developing AI Applications with Python and Flask

 


What you'll learn

Describe the steps and processes involved in creating a Python application including the application development lifecycle 

Create Python modules, run unit tests, and package applications while ensuring the PEP8 coding best practices

Explain the features of Flask and deploy applications on the web using the Flask framework

Create and deploy an AI-based application onto a web server using IBM Watson AI Libraries and Flask

Join Free: Developing AI Applications with Python and Flask

There are 3 modules in this course

This mini course is intended to apply basic Python skills for developing Artificial Intelligence (AI) enabled applications. In this hands-on project you will assume the role of a developer and perform tasks including:  

- Develop functions and application logic 
- Exchange data using Watson AI libraries
- Write unit tests, and 
- Package the application for distribution. 

You will demonstrate your foundational Python skills by employing different techniques to develop web applications and AI powered solutions. After completing this course, you will have added another project to your portfolio and gained the confidence to begin developing AI enabled applications using Python and Flask, Watson AI libraries, build and run unit tests, and package the application for distribution out in the real world.

Tuesday, 27 August 2024

5 Practical Python Programs Using the Pickle Library

 

1. Saving and Loading a List

This program saves a list to a file and then loads it back.


import pickle


my_list = ['apple', 'banana', 'cherry']


with open('list.pkl', 'wb') as file:

    pickle.dump(my_list, file)


with open('list.pkl', 'rb') as file:

    loaded_list = pickle.load(file)


print("Loaded List:", loaded_list)


#source code --> clcoding.com

Loaded List: ['apple', 'banana', 'cherry']



2. Saving and Loading a Dictionary

This program demonstrates saving a dictionary to a file and loading it back.


import pickle


my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}


with open('dict.pkl', 'wb') as file:

    pickle.dump(my_dict, file)


with open('dict.pkl', 'rb') as file:

    loaded_dict = pickle.load(file)


print("Loaded Dictionary:", loaded_dict)


#source code --> clcoding.com

Loaded Dictionary: {'name': 'John', 'age': 30, 'city': 'New York'}



3. Saving and Loading a Custom Object

This program saves an instance of a custom class to a file and loads it back.


import pickle


class Person:

    def __init__(self, name, age):

        self.name = name

        self.age = age


    def __repr__(self):

        return f"Person(name={self.name}, age={self.age})"


person = Person('Alice', 25)


with open('person.pkl', 'wb') as file:

    pickle.dump(person, file)


with open('person.pkl', 'rb') as file:

    loaded_person = pickle.load(file)


print("Loaded Person:", loaded_person)


#source code --> clcoding.com

Loaded Person: Person(name=Alice, age=25)



4. Saving and Loading a Tuple

This program saves a tuple to a file and loads it back.


import pickle


my_tuple = (10, 20, 30, 'Hello')


with open('tuple.pkl', 'wb') as file:

    pickle.dump(my_tuple, file)


with open('tuple.pkl', 'rb') as file:

    loaded_tuple = pickle.load(file)


print("Loaded Tuple:", loaded_tuple)


#source code --> clcoding.com

Loaded Tuple: (10, 20, 30, 'Hello')



5. Saving and Loading Multiple Objects

This program saves multiple objects to a single file and loads them back.


import pickle


list_data = [1, 2, 3]

dict_data = {'a': 1, 'b': 2}

string_data = "Hello, World!"


with open('multiple.pkl', 'wb') as file:

    pickle.dump(list_data, file)

    pickle.dump(dict_data, file)

    pickle.dump(string_data, file)


with open('multiple.pkl', 'rb') as file:

    loaded_list = pickle.load(file)

    loaded_dict = pickle.load(file)

    loaded_string = pickle.load(file)


print("Loaded List:", loaded_list)

print("Loaded Dictionary:", loaded_dict)

print("Loaded String:", loaded_string)


#source code --> clcoding.com

Loaded List: [1, 2, 3]

Loaded Dictionary: {'a': 1, 'b': 2}

Loaded String: Hello, World!


7 Lesser-Known Python Techniques about Lists

 

1. Flatten a Nested List

Flatten a deeply nested list into a single list of elements.


from collections.abc import Iterable


def flatten(lst):

    for item in lst:

        if isinstance(item, Iterable) and not isinstance(item, str):

            yield from flatten(item)

        else:

            yield item


nested_list = [1, [2, 3, [4, 5]], 6]

flat_list = list(flatten(nested_list))

print(flat_list)  

[1, 2, 3, 4, 5, 6]


2. List of Indices for Specific Value

Get all indices of a specific value in a list.


lst = [10, 20, 10, 30, 10, 40]

indices = [i for i, x in enumerate(lst) if x == 10]

print(indices) 

[0, 2, 4]

3. Transpose a List of Lists (Matrix)

Transpose a matrix-like list (switch rows and columns).


matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

transposed = list(map(list, zip(*matrix)))

print(transposed)  

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]



4. Rotate a List

Rotate the elements of a list by n positions.


def rotate(lst, n):

    return lst[-n:] + lst[:-n]


lst = [1, 2, 3, 4, 5]

rotated_lst = rotate(lst, 2)

print(rotated_lst) 

[4, 5, 1, 2, 3]

5. Find Duplicates in a List

Identify duplicate elements in a list.


from collections import Counter


lst = [1, 2, 2, 3, 4, 4, 4, 5]

duplicates = [item for item, count in Counter(lst).items() if count > 1]

print(duplicates)  

[2, 4]


6. Chunk a List

Split a list into evenly sized chunks.


def chunk(lst, n):

    for i in range(0, len(lst), n):

        yield lst[i:i + n]


lst = [1, 2, 3, 4, 5, 6, 7, 8]

chunks = list(chunk(lst, 3))

print(chunks)  

[[1, 2, 3], [4, 5, 6], [7, 8]]

7. Remove Consecutive Duplicates

Remove consecutive duplicates from a list, preserving order.


from itertools import groupby


lst = [1, 2, 2, 3, 3, 3, 4, 4, 5]

result = [key for key, _ in groupby(lst)]

print(result)  

[1, 2, 3, 4, 5]

Monday, 26 August 2024

Barcode using Python

 

pip install python-barcode


import barcode

from barcode.writer import ImageWriter

from IPython.display import Image, display


barcode_format = barcode.get_barcode_class('ean13')


barcode_number = '123456789012'


barcode_image = barcode_format(barcode_number, writer=ImageWriter())


barcode_filename = 'barcode_image'

barcode_image.save(barcode_filename)


display(Image(filename=f'{barcode_filename}.png'))

Sunday, 25 August 2024

Color code using Python

 

from webcolors import name_to_hex


def color_name_to_code(color_name):

    try:

        color_code = name_to_hex(color_name)

        return color_code

    except ValueError:

        return None

colorname = input("Enter color name : ")

result_code = color_name_to_code(colorname)

print(result_code)  


from webcolors import hex_to_name


def color_code_to_name(color_code):

    try:

        color_name = hex_to_name(color_code)

        return color_name

    except ValueError:

        return None

colorcode = input("Enter color code : ")

result_name = color_code_to_name(colorcode)

print(result_name)  

Saturday, 24 August 2024

Phone Number Handling in Python

 

1. Parse and Format a Phone Number

This program parses a phone number and formats it in the international format.


import phonenumbers

from phonenumbers import PhoneNumberFormat, format_number


phone_number = phonenumbers.parse("+14155552671", "US")


formatted_number = format_number(phone_number, PhoneNumberFormat.INTERNATIONAL)


print(f"Formatted Number: {formatted_number}")

Formatted Number: +1 415-555-2671

2. Validate a Phone Number

This program checks whether a phone number is valid or not.


import phonenumbers


phone_number = phonenumbers.parse("+14155552671", "US")


is_valid = phonenumbers.is_valid_number(phone_number)


print(f"Is the phone number valid? {'Yes' if is_valid else 'No'}")

Is the phone number valid? Yes


3. Get the Location of a Phone Number

This program retrieves the location associated with a phone number.


import phonenumbers

from phonenumbers import geocoder


phone_number = phonenumbers.parse("+14155552671", "US")


location = geocoder.description_for_number(phone_number, "en")


print(f"Location: {location}")


#source Code --> clcoding.com

Location: San Francisco, CA

4. Carrier Detection

This program detects the carrier of a given phone number.


import phonenumbers

from phonenumbers import carrier


phone_number = phonenumbers.parse("+14155552671", "US")


phone_carrier = carrier.name_for_number(phone_number, "en")


print(f"Carrier: {phone_carrier}")


#source Code --> clcoding.com

Carrier: 


5. Time Zone Detection

This program retrieves the time zones associated with a phone number.


import phonenumbers

from phonenumbers import timezone


phone_number = phonenumbers.parse("+14155552671", "US")


time_zones = timezone.time_zones_for_number(phone_number)


print(f"Time Zones: {', '.join(time_zones)}")


#source Code --> clcoding.com

Time Zones: America/Los_Angeles

Python Coding challenge - Day 241 | What is the output of the following Python Code?


Code:

a = [1, 2, 3]

b = a

a.append(4)

print(b)

Solution and Explanantion: 

 a = [1, 2, 3]:

This line creates a list a with elements [1, 2, 3].

b = a:

Here, b is not a new list but a reference to the same list object that a refers to. In Python, variables that hold lists (and other mutable objects) actually hold references to the memory location where the list is stored. So, b now refers to the same list as a.

a.append(4):

This line adds the element 4 to the end of the list a. Since a and b refer to the same list, this modification affects both a and b.

print(b):

Since b refers to the same list as a, the output will show the modified list [1, 2, 3, 4].

Final Output:

[1, 2, 3, 4]

The key concept here is that a and b are references to the same list in memory, so changes to the list via one variable are reflected in the other.

Fetching and Displaying Periodic Table Data in Python


 Periodic Table Data in Python

pip install chempy


from chempy.util import periodic


n = int(input("Enter number to see the table: "))

print("Atomic No.\tName\t\tSymbol\t\tMass")


for i in range(1, n + 1):

    print(i, end="\t\t")

    if len(periodic.names[i]) > 7:

        print(periodic.names[i], end="\t")

    else:

        print(periodic.names[i], end="\t\t")

    print(periodic.symbols[i], end="\t\t")

    print(periodic.relative_atomic_masses[i])

#source code --> clcoding.com

Atomic No. Name Symbol Mass

1 Helium He 4.002602

2 Lithium Li 6.94

3 Beryllium Be 9.0121831

4 Boron B 10.81

5 Carbon C 12.011

6 Nitrogen N 14.007

7 Oxygen O 15.999

8 Fluorine F 18.998403163

9 Neon Ne 20.1797

10 Sodium Na 22.98976928

11 Magnesium Mg 24.305

12 Aluminium Al 26.9815384

13 Silicon Si 28.085

14 Phosphorus P 30.973761998

15 Sulfur S 32.06

16 Chlorine Cl 35.45

17 Argon Ar 39.95

18 Potassium K 39.0983

19 Calcium Ca 40.078

20 Scandium Sc 44.955908

Friday, 23 August 2024

IP Address Manipulation with Python



1. Check if an IP Address is Private

This program checks whether an IP address belongs to a private range.


import ipaddress


def check_private_ip(ip):

    try:

        ip_obj = ipaddress.ip_address(ip)

        return ip_obj.is_private

    except ValueError:

        return False


ip = "192.168.0.1"

print(f"Is {ip} private? {check_private_ip(ip)}")


#source code --> clcoding.com

Is 192.168.0.1 private? True


2. Calculate the Network Range from a CIDR Notation

This program calculates the network range from a given CIDR notation.


import ipaddress


def get_network_range(cidr):

    try:

        network = ipaddress.ip_network(cidr, strict=False)

        return (network.network_address, network.broadcast_address)

    except ValueError:

        return None


cidr = "192.168.1.0/24"

network_range = get_network_range(cidr)

if network_range:

    print(f"Network range: {network_range[0]} - {network_range[1]}")


#source code --> clcoding.com

Network range: 192.168.1.0 - 192.168.1.255


3. Check if an IP Address is in a Specific Network

This program checks if a given IP address is part of a specified network.


import ipaddress


def ip_in_network(ip, network):

    try:

        network_obj = ipaddress.ip_network(network, strict=False)

        ip_obj = ipaddress.ip_address(ip)

        return ip_obj in network_obj

    except ValueError:

        return False


ip = "192.168.1.10"

network = "192.168.1.0/24"

print(f"Is {ip} in network {network}? {ip_in_network(ip, network)}")


#source code --> clcoding.com

Is 192.168.1.10 in network 192.168.1.0/24? True


4. Generate All IP Addresses in a Network

This program generates all possible IP addresses within a given network.


import ipaddress


def generate_ips_in_network(network):

    try:

        network_obj = ipaddress.ip_network(network, strict=False)

        return [str(ip) for ip in network_obj.hosts()]

    except ValueError:

        return []


network = "192.168.1.0/30"

ips = generate_ips_in_network(network)

print(f"IP addresses in {network}: {ips}")


#source code --> clcoding.com

IP addresses in 192.168.1.0/30: ['192.168.1.1', '192.168.1.2']


5. Convert Integer to IPv4 Address

This program converts an integer back to its corresponding IPv4 address.


import ipaddress


def int_to_ipv4(integer):

    try:

        return str(ipaddress.IPv4Address(integer))

    except ValueError:

        return None


ipv4_int = 3232235777

print(f"Integer: {ipv4_int} -> IPv4: {int_to_ipv4(ipv4_int)}")


#source code --> clcoding.com

Integer: 3232235777 -> IPv4: 192.168.1.1

Wireframes and Surface Plots in Python

 

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D


x = np.linspace(-5, 5, 50); y = np.linspace(-5, 5, 50)

X, Y = np.meshgrid(x, y)

Z = np.sin(np.sqrt(X**2 + Y**2))


fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

ax.plot_wireframe(X, Y, Z, color='blue')


ax.set_xlabel('X axis',); ax.set_ylabel('Y axis')

ax.set_zlabel('Z axis')

plt.show()

#source Code --> clcoding.com


import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D


x = np.linspace(-5, 5, 50); y = np.linspace(-5, 5, 50)

X, Y = np.meshgrid(x, y)

Z = np.sin(np.sqrt(X**2 + Y**2))


fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

surface = ax.plot_surface(X, Y, Z, cmap='viridis')

fig.colorbar(surface, ax=ax, shrink=0.5, aspect=5)


ax.set_xlabel('X axis'); ax.set_ylabel('Y axis')

ax.set_zlabel('Z axis')

plt.show()

Wednesday, 21 August 2024

10 Essential Use Cases of Python's zip() Function with Examples

 

1. Combining Two Lists

Use case: Merging two lists element-wise.

names = ["Alice", "Bob", "Charlie"]

ages = [25, 30, 35]


combined = list(zip(names, ages))

print(combined)  

[('Alice', 25), ('Bob', 30), ('Charlie', 35)]

2. Unzipping Lists

Use case: Splitting paired data into separate lists.


combined = [('Alice', 25), ('Bob', 30), ('Charlie', 35)]


names, ages = zip(*combined)

print(names)  

print(ages)   

('Alice', 'Bob', 'Charlie')

(25, 30, 35)



3. Iterating Over Multiple Lists Simultaneously

Use case: Useful when you need to iterate through multiple lists at the same time.


subjects = ['Math', 'Science', 'English']

scores = [88, 92, 85]


for subject, score in zip(subjects, scores):

    print(f"{subject}: {score}")

Math: 88

Science: 92

English: 85

4. Creating Dictionaries

Use case: Creating dictionaries from two lists: one for keys, one for values.


keys = ['name', 'age', 'city']

values = ['Alice', 25, 'New York']


dictionary = dict(zip(keys, values))

print(dictionary)  

{'name': 'Alice', 'age': 25, 'city': 'New York'}


5. Combining Multiple Lists

Use case: Zipping more than two lists together.


list1 = [1, 2, 3]

list2 = ['a', 'b', 'c']

list3 = [True, False, True]


combined = list(zip(list1, list2, list3))

print(combined)  

[(1, 'a', True), (2, 'b', False), (3, 'c', True)]

6. Handling Different Length Iterables

Use case: When lists have different lengths, zip() stops at the shortest one.


list1 = [1, 2, 3]

list2 = ['a', 'b']


combined = list(zip(list1, list2))

print(combined)  

[(1, 'a'), (2, 'b')]



7. Working with Ranges

Use case: Zipping together ranges or sequences.


numbers = range(1, 4)

letters = ['a', 'b', 'c']


result = list(zip(numbers, letters))

print(result)  

[(1, 'a'), (2, 'b'), (3, 'c')]

8. Comparing Elements of Two Lists

Use case: Zipping two lists to compare elements.


list1 = [1, 2, 3]

list2 = [1, 4, 3]


comparison = [a == b for a, b in zip(list1, list2)]

print(comparison)

[True, False, True]



9. Transpose a Matrix

Use case: Use zip() to transpose rows and columns of a 2D matrix.


matrix = [

    [1, 2, 3],

    [4, 5, 6],

    [7, 8, 9]

]


transposed = list(zip(*matrix))

print(transposed) 

[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

10. Zipping with Enumerate

Use case: Zipping with an enumerated list for indexed pairings.


data = ['apple', 'banana', 'cherry']

indexed_data = list(zip(range(1, len(data) + 1), data))

print(indexed_data)  

[(1, 'apple'), (2, 'banana'), (3, 'cherry')]

Tuesday, 20 August 2024

How to Use Python f-Strings?

 

Basic Usage

Here's a basic example of using f-strings:


name = "Alice"

age = 30


greeting = f"Hello, my name is {name} and I am {age} years old."

print(greeting)

Hello, my name is Alice and I am 30 years old.

Embedding Expressions

You can also embed expressions directly inside f-strings:


length = 5

width = 3


area = f"The area of the rectangle is {length * width} square units."

print(area)

The area of the rectangle is 15 square units.



Formatting Numbers

F-strings also allow you to format numbers:


pi = 3.141592653589793


formatted_pi = f"Pi rounded to two decimal places is {pi:.2f}."

print(formatted_pi)

Pi rounded to two decimal places is 3.14.

Using Functions Inside F-Strings

You can even call functions within an f-string:


def greet(name):

    return f"Hello, {name}!"


message = f"{greet('Alice')}"

print(message)

Hello, Alice!



Multi-line F-Strings

F-strings can also be used with multi-line strings:


name = "Alice"

age = 30


info = (

    f"Name: {name}\n"

    f"Age: {age}\n"

    f"Location: Wonderland"

)

print(info)

Name: Alice

Age: 30

Location: Wonderland



Combining F-Strings with Other String Formatting

F-strings can be combined with other string formatting methods if necessary:


name = "Alice"

age = 30


combined = f"Name: {name}, " + "Age: {}".format(age)

print(combined)

Name: Alice, Age: 30

Monday, 19 August 2024

8 Levels of Writing Python Functions

 Level 1: Basic Function Definition

Goal: Learn how to define simple functions with def.


def greet():

    return "Hello, World!"

Concepts: Function definition, return statement, and basic usage.


Level 2: Function Arguments

Goal: Understand how to pass data to functions using arguments.


def greet(name):

    return f"Hello, {name}!"

Concepts: Positional arguments, basic string formatting.


Level 3: Default Arguments

Goal: Use default argument values to make functions more flexible.

def greet(name="World"):

    return f"Hello, {name}!"

Concepts: Default values, handling optional parameters.


Level 4: Variable-Length Arguments

Goal: Handle an arbitrary number of arguments using args and *kwargs.


def greet(*names):

    return "Hello, " + ", ".join(names) + "!"

Concepts: args for positional arguments, *kwargs for keyword arguments.


Level 5: Return Multiple Values

Goal: Return multiple values from a function using tuples.

def divide(a, b):

    quotient = a // b

    remainder = a % b

    return quotient, remainder

    

Concepts: Tuple unpacking, returning multiple values.


Level 6: First-Class Functions

Goal: Treat functions as first-class citizens by passing them as arguments or returning them.


def apply_function(func, value):

    return func(value)


def square(x):

    return x * x


result = apply_function(square, 5)

Concepts: Functions as arguments, higher-order functions.


Level 7: Lambda Functions

Goal: Use lambda expressions for short, unnamed functions.


def apply_function(func, value):

    return func(value)


result = apply_function(lambda x: x * x, 5)

Concepts: Lambda expressions, anonymous functions.


Level 8: Decorators

Goal: Modify the behavior of functions using decorators.

def decorator(func):

    def wrapper(*args, **kwargs):

        print("Before the function")

        result = func(*args, **kwargs)

        print("After the function")

        return result

    return wrapper


@decorator

def greet(name):

    return f"Hello, {name}!"


greet("World")

Before the function

After the function

'Hello, World!'

Concepts: Decorators, wrapping functions, modifying behavior.

Sunday, 18 August 2024

Pencil Sketch using Python

 

import cv2

import numpy as np


def pencil_sketch(image_path, output_path):

    image = cv2.imread(image_path)


    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)


    inverted_gray_image = cv2.bitwise_not(gray_image)


    blurred_image = cv2.GaussianBlur(inverted_gray_image, (21, 21), 0)


    inverted_blurred_image = cv2.bitwise_not(blurred_image)

    pencil_sketch_image = cv2.divide(gray_image, inverted_blurred_image, scale=256.0)

    cv2.imwrite(output_path, pencil_sketch_image)

 

    cv2.imshow('Pencil Sketch', pencil_sketch_image)

    cv2.waitKey(0)

    cv2.destroyAllWindows()


input_image_path = 'w2.jpg'

output_image_path = 'w2_sketch.jpg'

pencil_sketch(input_image_path, output_image_path)

World map using Python

 

pip install cartopy


import cartopy.crs as ccrs

import cartopy.feature as cfeature

import matplotlib.pyplot as plt


projection = ccrs.PlateCarree()


fig, ax = plt.subplots(subplot_kw={'projection': projection})

ax.set_extent([-180, 180, -90, 90], crs=ccrs.PlateCarree())


ax.add_feature(cfeature.LAND, facecolor='lightgray')

ax.add_feature(cfeature.OCEAN, facecolor='lightblue')


ax.gridlines()

plt.show()


Movie Information using Python

 

import imdb


ia = imdb.Cinemagoer()

Movie = input("Enter a movie name: ")

items = ia.search_movie(Movie)

print("\nSearch results:")

for index, movie in enumerate(items):

    print(f"{index + 1}. {movie['title']} ({movie['year']})")


movie_index = int(input("\nEnter the number of the movie you want to get info for: ")) - 1

movie_id = items[movie_index].movieID

movie_info = ia.get_movie(movie_id)


print("\nMovie Information:")

print(f"Title: {movie_info.get('title')}")

print(f"Year: {movie_info.get('year')}")

print(f"Rating: {movie_info.get('rating')}")

print(f"Genres: {', '.join(movie_info.get('genres', []))}")

print(f"Director(s): {', '.join(str(d) for d in movie_info.get('directors', []))}")

print(f"Cast: {', '.join(str(c) for c in movie_info.get('cast', [])[:5])}...") 

print(f"Plot: {movie_info.get('plot outline')}")

print(f"Runtime: {movie_info.get('runtimes', ['N/A'])[0]} minutes")

print(f"Country: {', '.join(movie_info.get('countries', []))}")

print(f"Language: {', '.join(movie_info.get('languages', []))}")


#Source Code --> clcoding.com

Search results:

1. Lift (2024)

2. Elevator to the Gallows (1958)

3. Lift (2021)

4. The Lift (1983)

5. Lift (2001)

6. The Big Lift (1950)

7. Lift (2022)

8. Lift (2016)

9. Lift Off (1992)

10. How Heavy Are the Dumbbells You Lift? (2019)

11. Lift (1989)

12. Lift Me Up (2015)

13. The Lift Boy (2019)

14. Lift (2019)

15. Lift (2017)

16. Lift (2018)

17. The Lift (2022)

18. Lift Off (1969)

19. LIFT (2019)

20. Lift Off (2021)

Movie Information:

Title: Lift

Year: 2024

Rating: 5.5

Genres: Action, Comedy, Crime, Drama, Thriller

Director(s): F. Gary Gray

Cast: Kevin Hart, Gugu Mbatha-Raw, Sam Worthington, Vincent D'Onofrio, Úrsula Corberó...

Plot: Cyrus, an international thief and his crew specialize in stealing extremely costly art pieces and resort to kidnapping if necessary. Cyrus's ex girlfriend Abby, an Interpol agent convinces him to steal a huge consignment of gold being sent by plane from London to Zurich in return for immunity from arrest . Cyrus knows this is an almost impossible task but decides to go ahead since it means freedom for him and his crew not to speak of his getting together with Abby again.

Runtime: 107 minutes

Country: United States

Language: English, Italian

 

Saturday, 17 August 2024

Top 5 Python Programs Using demoji for Emoji Processing

 1. Remove Emojis from a Text String

This program removes all emojis from a given text string.


import demoji

text = "Python is fun! 🐍🔥 Let's code! 💻🎉"

cleaned_text = demoji.replace(text, "")

print(cleaned_text)

#source Code --> clcoding.com

Python is fun!  Let's code! 

2. Replace Emojis with Descriptions

This program replaces emojis in a text with their corresponding descriptions.


import demoji

text = "Good morning! ☀️ Have a nice day! 🌸😊"

emojis = demoji.findall(text)

for emoji, description in emojis.items():

    text = text.replace(emoji, f"[{description}]")

print(text)

#source Code --> clcoding.com

Good morning! [sun] Have a nice day! [cherry blossom][smiling face with smiling eyes]

3. Count the Number of Emojis in a Text

This program counts how many emojis are present in a text string.


import demoji

text = "Coding is awesome! 👨‍💻🚀🤓"

emoji_count = len(demoji.findall(text))

print(f"Number of emojis: {emoji_count}")

#source Code --> clcoding.com

Number of emojis: 3

4. Extract All Emojis from a Text

This program extracts all the emojis from a given text string.


import demoji

text = "Enjoy your meal! 🍽️🍕🍔🍟"

emojis = demoji.findall(text)

print("Emojis found:", list(emojis.keys()))

#source Code --> clcoding.com

Emojis found: ['🍕', '🍽️', '🍟', '🍔']

5. Create an Emoji Frequency Dictionary

This program creates a dictionary that maps each emoji in a text to the number of times it appears.


import demoji

text = "I love 🍎 and 🍌. Do you like 🍎 too? 🍎🍎"

emoji_freq = {}

emojis = demoji.findall(text)

for emoji in emojis.keys():

    emoji_freq[emoji] = text.count(emoji)

print("Emoji Frequency:", emoji_freq)

#source Code --> clcoding.com

Emoji Frequency: {'🍌': 1, '🍎': 4}

Python Coding challenge - Day 240 | What is the output of the following Python Code?

 

def func(x=[]):

    x.append(1)

    return x

print(func())

print(func())

Solution and Explanation: B is the correct answer

Default Argument Behavior:

The default argument x=[] is evaluated only once when the function is defined, not each time the function is called. This means that if the default value is a mutable object like a list, it will be shared across all calls to the function.

First Function Call (print(func())):

The first time func() is called, the list x is empty because the default value ([]) is used.
Inside the function, 1 is appended to the list, so x becomes [1].
The function returns this list, which is then printed, so the output is:

Second Function Call (print(func())):

The second time func() is called, the same list x from the previous call is used, not a new empty list.
Again, 1 is appended to this list, so x becomes [1, 1].
The function returns this list, which is then printed, so the output is:
[1, 1]

Mutable Default Arguments: In Python, using a mutable object (like a list or dictionary) as a default argument can lead to unexpected behavior because it persists across function calls.
Best Practice: To avoid this, use None as the default value and then initialize the mutable object inside the function if needed.

Popular Posts

Categories

100 Python Programs for Beginner (87) AI (35) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (179) C (77) C# (12) C++ (83) Course (67) Coursera (231) Cybersecurity (24) Data Analytics (1) data management (11) Data Science (132) Data Strucures (8) Deep Learning (21) Django (14) Downloads (3) edx (2) Engineering (14) Euron (14) Excel (13) Factorial (1) Finance (6) flask (3) flutter (1) FPL (17) Generative AI (4) Google (34) Hadoop (3) HTML Quiz (1) HTML&CSS (47) IBM (30) IoT (1) IS (25) Java (93) Java quiz (1) Leet Code (4) Machine Learning (62) Meta (22) MICHIGAN (5) microsoft (4) Nvidia (4) Pandas (4) PHP (20) Projects (29) pyth (1) Python (958) Python Coding Challenge (398) Python Quiz (54) Python Tips (3) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (4) Software (17) SQL (42) UX Research (1) web application (8) Web development (4) web scraping (2)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses